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Abstract
In this note we review several situations in which stochastic PDEs exhibit ergodic
properties. We begin with the basic dissipative conditions, as stated by Da Prato and
Zabczyk in their classical monograph. Then we describe the singular case of SPDEs
with reflection. Nextwemove to some degenerate (and thusmore demanding) settings.
Namely we recall some results obtained around 2006, concerning stochastic Navier-
Stokes equations with a very degenerate noise. We finish the article by handling some
cases with degenerate coefficients. This includes a new result about the parabolic
Anderson model in dimension d ≥ 3, driven by a general class of noises and fairly
general initial conditions. In this context, a phase transition is observed, expressed in
terms of the noise intensity.
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1 Introduction

Any person having attended a stochastic analysis conference in the 90’s-00’s will
certainly remember Beppe, consistently beginning his talks with the famous singing
words: “let A be an operator on aHilbert space H , generating aC0-semigroup S(t)…”.
However, behind what could sometimes be seen as a kind of ritual, lies an important
fact: Beppe was an exceptional pioneer in the area of stochastic PDEs, who was com-
pletely passionate about his topic. Most importantly, he certainly was the undisputed
leader of the field for decades. This outstanding legacy is well highlighted by the series
of books [21–23] written in collaboration with Jerzy Zabczyk, which have been and
still are an immense source of inspiration for the stochastic PDE community.

Among the influential contributions mentioned above, the current paper will single
out [21]. This book brings together the worlds of general ergodic theory and stochastic
models in infinite dimensions, a delicate task which is achieved by Da Prato and
Zabczyk in an astonishingly clear and consistent way. Starting from the foundations,
the book covers a wide range of applications to systems (dissipative equations, Navier-
Stokes equations, spin systems) which are still the object of active research today.

Our contribution first proposes to review a few basic facts contained in [21]. Namely
we will recall the fundamental notions allowing to get ergodic type results for infi-
nite dimensional stochastic differential equations seen as dynamical systems. We will
illustrate this technology by stating an ergodic result for a generic stochastic PDE. We
shall then examine some cases departing from the standard Da Prato-Zabczyk setting.
Without any pretension to be exhaustive, we wish to give an account on the following
situations:

(i) Case of reflected equations. Following [53], we will see how reflections change
the landscape in terms of invariant measures. This encompasses the identification
of new invariant measures, as well as integration by parts formulae.

(ii) Ergodicity in degenerate situations. In the celebrated result [37], Hairer and
Mattingly showed that a nondegenerate noise is not necessary for good mixing
properties of a stochastic PDE. Their result focuses on a stochastic Navier-Stokes
equation, for which only four active modes in the noise are requested.

(iii) Phase transition in ergodicity. Our own contribution will be related to another
degenerate situation, namely the parabolic Anderson model (PAM). There we
will see that for a spatial variable x ∈ R

d with d ≥ 3, we have two cases: at
high temperature the equation exhibits an ergodic behavior; In contrast, for low
temperatures the moments of the solution blow up as t → ∞. We shall give a
self contained proof of the ergodic behavior based on contraction arguments, for
a general spatial covariance of the noise. This result appears to be new and is
inspired by [34, 36].

This constant dialogue with Da Prato and Zabczyk’s books (seen as benchmarks)
is a staple in the stochastic analysis literature. We will also mention possible new
developments for polymer measures.

Our article is structured as follows: in Section 2 we recall the classical Da Prato-
Zabczyk ergodic setting for stochastic PDEs. Section 3 is devoted to equations with
reflection. In Section 4 we turn to the case of degenerate noises, focusing on the
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stochastic Navier-Stokes case. Eventually Section 5 deals with phase transitions in
ergodicity for generalized PAMs. A Gronwall-type lemma is proved in Appendix A.

2 The standard stochastic PDE case

In this section, we describe the standard ergodic setting for stochastic PDEs in Da
Prato and Zabczyk’s language. We will spell out the general setting in Section 2.1 and
then outline the main ergodic result in Section 2.2.

2.1 Abstract setting for stochastic PDEs

Let us briefly recall the abstract settingwhich is used in [21] in order to solve stochastic
differential equations in infinite dimensions. It can be split in four ingredients (notice
that for sake of conciseness we will not define every technical term below, we refer to
Beppe’s original book for a complete and self-contained exposition):

(a) As recalled in the introduction, everything starts with the infinitesimal generator
A of a strongly continuous semigroup {S(t); t ≥ 0} defined on a separable Hilbert
space H (notice that analyticity of S(t) is further assumed in [21]).

(b) One considers amapping F : H → H with linear growth andLipschitz continuity.
That is one has

F(x) � 1 + |x |, and |F(x) − F(y)| � |x − y|, (2.1)

where | · | denotes the norm in H . The mapping F will be the drift of our equation.
(c) On another (possibly larger) Hilbert spaceU , let Q be a trace class operator. Then

we can define a Q-Wiener process on a complete probability space (�,F ,P).
This is a U -valued continuous process {Wt ; t ≥ 0} with independent increments
and such that for all t ≥ 0, h > 0 we have

1

h1/2
(Wt+h − Wt ) ∼ N (0, Q). (2.2)

Notice that the space U is equipped with an inner product induced by Q:

〈ξ, ψ〉Q := 〈ξ, Qψ〉U . (2.3)

(d) The diffusion coefficient B of our equation has to be compatiblewith the Q-Wiener
process and the semigroup S(t). Namely B : H → L(U ; H) has to be a strongly
continuous map such that the following growth conditions are fulfilled for every
t > 0 and x, y ∈ H :

‖S(t)B(x)‖HS ≤ K (t)(1 + |x |), (2.4)

‖S(t)B(x) − S(t)B(y)‖HS ≤ K (t)|x − y|, (2.5)
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where K is a kernel which sits in the space L2([0, T ]) for every T > 0. We also
label the following assumption which is useful in order to get regularity properties
of our stochastic differential equations: there exists α ∈ (0, 1/2) such that for
every T > 0 we have

∫ T

0
s−2αK 2(s)ds < ∞. (2.6)

Aswewill see in the next section, the above setting is sufficient to ensure existence,
uniqueness and ergodic properties of a general class of stochastic PDEs.

2.2 Ergodic properties

With our setting of Section 2.1 in hand, the general type of H -valued equation con-
sidered in [21] can be written as

dXt = [AXt + F(Xt )] dt + B(Xt )dWt , (2.7)

with an initial condition X0 = ξ for a given ξ ∈ H . Observe that equation (2.7) is
solved in the so-called mild sense, which can be written as

Xt = S(t)ξ +
∫ t

0
S(t − s)F(Xs)ds +

∫ t

0
S(t − s)B(Xs)dWs, (2.8)

where the stochastic integral in (2.8) has to be interpreted in the Itô sense.
The conditions (a)– (d) in Section 2.1 ensure existence and uniqueness of the solu-

tion to (2.7), although a complete theory for this fact is better found in the first Da
Prato-Zabczyk volume [22]. As far as ergodic properties are concerned, it should be
noticed that ergodic behaviors often rely on damping terms in dynamic systems. In
case of equation (2.7), this damping is provided by the operator A (whose spectrum
is implicitly thought of as mostly negative). The main result in this direction is sum-
marized in the following theorem.

Theorem 2.1 Assume the setting of Section 2.1 holds true. In addition, suppose that
the operators S(t) are compact and that the following uniform bound on moments is
satisfied: one can find T0 > 0 and p ≥ 2 such that

sup
t≥T0, ξ∈H

Eξ

[|Xt |p
]

< ∞. (2.9)

Then there exists an invariant measure for equation (2.7).

Proof The detailed proof is found in [21, Theorem 6.1.2]. We will content ourselves
with an outline of the main ingredients. This will be split in several steps.
Step 1: Averaged measure. The solution {Xt ; t ≥ 0} to equation (2.7) generates a
Markov dynamics. We call Pt (ξ, ·) the corresponding transition. Next for a Borel set
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� ∈ H and T > 0 we set

RT (ξ, �) = 1

T

∫ T

0
Pt (ξ, �)dt . (2.10)

According to a celebrated criteria from Krylov and Bogoliubov, there exists an invari-
ant measure for Xt as long as the family {RT ; T > 0} is tight. Let us recall that
tightness of RT means that for every ε ∈ (0, 1), one is able to find a compact set
Kε ⊂ H such that

RT (ξ, Kε) ≥ 1 − ε, uniformly in T . (2.11)

Summarizing, relation (2.11) implies the existence of an invariant measure.
A criterion like (2.11) is easy to verify when H = R

n . Indeed, in that case the
compact Kε can be taken as a (closed) ball B(0, rε) for a proper radius rε > 0. In
addition, a direct application of Markov’s inequality entails that for any p ≥ 1

P (Xt /∈ B(0, rε)) ≤ E
[|Xt |p

]
r pε

, (2.12)

so that (2.11) is easily implied by (2.9). This is not true anymore when H is an infinite
dimensional functional space. Some additional ingredients are thus needed.
Step 2: Factorization method. In order to solve the problem raised in Step 1, Da Prato
and Zabczyk resort to one of their most emblematic and clever trick. Namely under
assumption (d), some elementary fractional integral arguments show that the stochastic
integral in (2.8) can be expressed as

∫ t

0
S(t − s)B(Xs)dWs = sin(απ)

π

∫ t

0
(t − s)α−1S(t − s)Ysds, (2.13)

where the process Y = Y (α) is the element of L2([0, T ]; H) defined by

Ys =
∫ s

0
(s − r)−αS(s − r)B(Xr )dWr .

Formula (2.13) is a progress in the following sense: we have obtained a representa-
tion of stochastic convolutions as Lebesgue type integrals. This expression is more
amenable to computations for regularity (and therefore compactness) estimates.
Step 3: Compactness. Recall that our goal is to establish relations (2.11)-(2.12) for
a family of compact sets Kε . This is achieved by writing the solution to (2.7) at time
t = 1 in the following way (thanks to the factorization formula (2.13)):

X1 = S(1)ξ + G1F(X) + GαY , (2.14)
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where for α ∈ (0, 1] we introduce an operator Gα : L p([0, 1]; H) → H by

Gα f = sin(απ)

π

∫ 1

0
(1 − s)α−1S(1 − s) f (s)ds.

An important point in the proof is that whenever S(t) is compact for t > 0, Gα is also
compact. Therefore whenever ξ, F(X) and Y in (2.14) lye in proper balls in H , the
random element X1 belongs to a compact set. A full description of this family of sets
{Kε; r > 0} stems from the decomposition (2.14):

Kε =
{
x ∈ H ; x = S(1)ξ + G1g + Gαh , with

|ξ | ≤ 1

ε
, |g|L p([0,1];H) ≤ 1

ε
, and |h|L p([0,1];H) ≤ 1

ε

}
.

(2.15)

Step 4: Conclusion. The expression (2.15) allows to locate X1 given by (2.14) in a
compact set thanks to mere moment estimates. Furthermore, we have assumed in (2.9)
that the moments of Xt are uniformly bounded. Hence for ε > 0 and Kε defined
by (2.15), we end up with

Pξ (X1 ∈ Kε) ≥ 1 − Cε p(1 + |ξ |p).

An easyMarkov conditioning procedure allows then to conclude that (2.11) holds true
whenever ε is small enough. This implies the existence of an invariant measure for Xt

as explained in Step 1.

As the reader might see from the sketch above, Da Prato and Zabczyk’s method is
a very elaborate combination of deep functional analysis insight, stochastic calculus
techniques and fundamental ergodic tools. It is difficult to overstate Da Prato’s pio-
neering role in this type of development. Let us add a couple of remarks to close the
section.

Remark 2.2 Existence of an invariant measure is the most basic result one can get in
ergodic theory. The extra ingredients put forward in [21] in order to get uniqueness are
essentially reduced to strong Feller properties for the transition Pt and irreducibility.
We will go back to those issues in Section 4. However, let us mention at this point that
uniqueness of the invariantmeasure is closely related to irreducibility of theMarkovian
transition Pt (ξ, ·) alluded to in the proof of Theorem 2.1. This irreducibility is ensured
by nondegeneracy properties of the noise W and the diffusion coefficient B in (2.8).
A standard way to express this nondegeneracy when B is constant is the following:

Im (S(t)) ⊂ Im
(
Q1/2

t
)
, where Qt =

∫ t

0
S(s)B S(s)∗ ds . (2.16)

Remark 2.3 For dissipative systems, that is when A+ F in (2.7) can be considered as
a damping coefficient, one can prove convergence of L (Xt ) to an invariant measure
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by a direct analysis based on Itô formula. This type of consideration is obtained, e.g.,
in [21, Section 6.3 and 6.5]

Remark 2.4 As mentioned in the introduction, Da Prato and Zabczyk also investigate
the ergodic behavior of specific stochastic systems of interest. Those include delayed
systems, Burger’s equation, spin systems, and the Navier-Stokes equation. Each case
requires some serious modification of the general method.

3 A stochastic heat equation with reflection

We now start a series of deviations from the standard setting for ergodic stochastic
PDEs (as introduced in Section 2), beginning with equations involving reflections.
Observe that stochastic heat equations with reflection were firstly studied by Nualart
and Pardoux [46] in a quasilinear setting, building upon a deterministic framework
that had previously received considerable attention from various researchers; see [3]
and references therein. It is worth noting that reflected stochastic heat equations can
also arise as the scaling limit of microscopic models for random interfaces [31, 33].
As far as ergodic properties are concerned, reflections induce an extra singularity in
the equation. In the current section, we will summarize an approximation procedure
allowing us to handle this singularity. For further exploration of the topic, readers are
referred to Zambotti’s book [56] and survey paper [57, Section 6].

Stochastic PDEs with reflections can be handled in the abstract setting of Section 2.
In this context, the underlying Hilbert space should be H = L2([0, 1]). Nevertheless,
since we wish to encompass Dirichlet boundary conditions, we will consider a state
space of the form

H0 := {ξ ∈ H ; ξ(0) = ξ(1) = 0} , (3.1)

equipped with the inner product inherited from H . In addition, the reflection measure
will constrain solutions to live in a family of sets {Kα; α ≥ 0} defined by

Kα := C([0, 1]) ∩ {ξ ∈ H0; ξ ≥ −α} . (3.2)

With this preliminary notation inmind, we now consider the following equation driven
by a Brownian sheet W :

dXt = [AXt + F(Xt )] dt + dWt + η(dt). (3.3)

In equation (3.3), the operator A is defined as A = 1
2
, and F is assumed to be a

mapping similar to that considered in (2.1), which in particular might take the form

[F(ξ)] (x) = f (x, ξ(x)), for all ξ ∈ H and x ∈ [0, 1], (3.4)

with a regular enough function f : [0, 1] × R → R. As mentioned above, W is
a Brownian sheet. This means, in the language of Section 2, that W is a Q-Wiener
process as in (2.2)with Q = IdH . In the literature, the time derivative ofW (interpreted
as a generalized function) is also referred to as space-time white noise.
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It has been established in [46] that under certain mild conditions, for any initial
condition ξ ∈ Kα , the equation (3.3) reflected at −α ≤ 0 admits a unique solution.
This solution is a pair (Xα, ηα) wherein Xα is a Kα-valued process adapted to W
starting at ξ , and ηα is an adapted nonnegative random measure satisfying

∫
R+

∫ 1

0

(
α + Xα

t (x)
)
ηα(dt, dx) = 0.

In terms of ergodic results for (3.3), it is natural to wonder how the singularity of the
reflection is affecting invariant measures. Let us thus say a few words about invariant
measures for a system analogous to (3.3), yet with no reflection. In other words, let
us consider an equation such as (2.7) with B = Id and F of the form (3.4). For any
ξ ∈ H0 (recall that H0 is defined by (3.1)), we set

G(ξ) :=
∫ 1

0
dx

∫ ξ(x)

0
f (x, y)dy. (3.5)

Now we define an underlying measure μ on H0 as the distribution of the Brownian
bridge. It is a well-known fact (see the proof of Theorem 3.1 below for more details
about this assertion) that an invariant measure μG for (2.7) with B = Id is given by

μG(dξ) := e2G(x)μ(dx). (3.6)

In his paper [53], Zambotti shows how the above expansion for the invariant measure
is perturbed by the reflection. The result can be summarized as follows:

Theorem 3.1 (Theorem 5 of [53]) Let Bt be the standard Brownian motion in R3. Let
ν be the probability measure of the 3-d Bessel bridge, namely, the law of {|Bt |}t∈[0,1]
conditioned to B1 = 0. The set K0 is introduced in (3.2) with α = 0. We consider a
measure νG on K0 defined as follows: for all ξ ∈ K0,

νG(dξ) := e2G(ξ)ν(dξ), (3.7)

where G is given by (3.5). Then, νG is an invariant measure for (3.3) reflected at 0.

Proof Just as in Theorem 2.1, we only provide a brief overview of the proof strategy,
directing interested readers to [53] for a more detailed exposition.
Step 1: Approximating the equation. Let α > 0. For any ε > 0, consider the following
equation

dXα,ε
t =

[
AXα,ε

t + F(Xα,ε
t ) + (α + Xα,ε

t )−

ε

]
dt + dWt , (3.8)

with r− := max{−r , 0} for all r ∈ R. Then, it is known that for any initial condition
X0 = ξ ∈ H0, the equation (3.8) has a unique solution in H0. Furthermore, assuming
the initial condition ξ ∈ Kα , the same monotonicity arguments as in [46] assert that
as ε ↓ 0, the following statements hold:
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(i) For any (t, x) ∈ R+ × [0, 1], Xα,ε
t (x) increases to a random variable Xα

t (x) such
that Xα

t = {
Xα
t (x); x ∈ [0, 1]} ∈ Kα for all t > 0;

(ii)
{
ηα,ε(dt, dx) := ε−1(α + Xα,ε

t (x))−dtdx
}

ε>0
converge weakly to a nonnegative

measure ηα on R+ × [0, 1];
(iii) The pair (Xα, ηα) is a solution to (3.3) reflected at −α.

Step 2: Invariant measure for the OU process.Let A be any infinitesimal generator of a
strongly continuous semigroup on H0 as in Section 2.1. Then theOrnstein-Uhlenbeck
process (OU process), which is the solution to

dZt = AZtdt + dWt ,

has an invariant measure μ, which is a centered Gaussian measure on H0 with
covariance operator

∫∞
0 e2Atdt = (−2A)−1. This fact had been proved in Da Prato-

Zabczyk’s monograph [21, Theorem 6.2.1]. As alluded to in (3.6), in case A = 1
2
,

the Gaussian measure μ = N (
0, (−
)−1

)
on H0, concentrated on H0 ∩ C([0, 1]),

coincides with the distribution of the 1-d Brownian bridge B(t)
(d)= Bt − t B1 for

all t ∈ [0, 1] (where B stands for a 1-d Brownian motion). This can be seen by the
following equality, valid for every pair h, k ∈ H0:

E [〈B, h〉〈B, k〉] =
∫ 1

0
dt
∫ 1

0
ds E [(Bs − sB1) (Bt − t B1)] h(s)k(t)

=
∫ 1

0
dt
∫ 1

0
ds (s ∧ t − st) h(s)k(t) =

∫ 1

0
(−
)−1h(t)k(t)dt .

(3.9)

Notice that in (3.9), the last inequality can be briefly justified as follows: for every
h ∈ H0, the solution to the Dirichlet problem


g(t) = h(t), with boundary condition g(0) = g(1) = 0,

can be written as

g(t) = −
∫ 1

0
ds (s ∧ t − st) h(s).

Step 3: Invariant measure for(3.8). We now justify the claim in (3.6) in our context.
Let G be given as in (3.5). It is easy to see that for any ξ, ξ ′ ∈ H0, we have

〈∇G(ξ), ξ ′〉H0 =
∫ 1

0
f (x, ξ(x)) ξ ′(x) dx = 〈 f (·, ξ(·)), ξ ′〉H0 .

In the same way, if Vα is a mapping on H0 defined by

Vα(ξ) := 1

2

∫ 1

0

[
(α + ξ(x))−

]2
dx, for all ξ ∈ H0,
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then it is readily checked that for all ξ, ξ ′ ∈ H0, the following holds

〈∇Vα(ξ), ξ ′〉H0 = − 〈
(α + ξ(·))− , ξ ′〉

H0
.

As a consequence, (3.8) can be written as the following gradient system:

dXα,ε
t =

[
AXα,ε

t + ∇G(Xα,ε
t ) − 1

ε
∇Vα(Xα,ε

t )

]
dt + dWt .

Therefore, it follows from [21, Section 8.6] that equation (3.8) has an invariantmeasure
of the form

νGα,ε(dξ) := 1

Zα,ε

e2G(ξ)−(2Vα(ξ)/ε)μ(dξ), (3.10)

where, under some integrability conditions (not specified here for the sake of concise-
ness), the renormalization constant Zα,ε defined below is a finite positive number:

Zα,ε :=
∫
H0

e2G(ξ)−(2Vα(ξ)/ε)μ(dξ) ∈ (0,∞).

Step 4: Convergence of νGα,ε . Our claim (3.7) will be obtained by taking limits in both
α and ε in (3.10). Let us start by taking ε ↓ 0. It follows that

lim
ε↓0 2Vα(ξ)/ε =

{
0, if ξ ∈ Kα,

∞, if ξ ∈ (H0 \ Kα) ∩ C([0, 1]). (3.11)

Furthermore, recall thatμ is aGaussianmeasure supported on H0∩C([0, 1]). Plugging
relation (3.11) into (3.10), it is thus not hard to see that the following limit holds true:

νGα,ε(dξ) → νGα (dξ) := 1

Zα

e2G(ξ)να(dξ), as ε ↓ 0,

where the measure να and the normalization constant Zα are defined by

να(dξ) := 1

μ(Kα)
1Kα (ξ)μ(dξ) and Zα :=

∫
Kα

e2G(ξ)να(dξ). (3.12)

The limit in α in relation (3.12) is more involved. It is treated separately, and leads to
Proposition 3.3 below. This proposition asserts that να converges weakly to the law of
a Bessel bridge. Together with relation (3.12), this concludes the proof of Theorem 3.1.

Remark 3.2 Recall that μ coincides with the distribution of the 1-d Brownian bridge.
Thus by [48, Chapter III, Exercise (3.14)],μ(Kα) forα ≥ 0 can be explicitly computed
as follows:

μ(Kα) = 1 − e−2α2
. (3.13)
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Hence μ(Kα) ∼ 2α2 as α → 0, which dictates the singularity of να in (3.12). Sorting
out this singularity is the content of Proposition 3.3.

Proposition 3.3 The measures {να(dξ); α > 0} converge weakly to ν(dξ), the law of
the 3-d Bessel bridge, as α ↓ 0.

Proof Proposition 3.3 had already been proved in [29]. Here, we provide an alternative
proof as presented in [53]. The proof is based on the next theorem quoted from [5].

Theorem 3.4 ([5, Theorem 1]) Let e = {eτ ; τ ∈ [0, 1]} be a 3-d Bessel bridge, and let
ζ be a random variable uniformly distributed on [0, 1] and independent of e. Consider
a process β = {βτ ; τ ∈ [0, 1]} defined by

βτ := eτ⊕ζ − eζ , with τ ⊕ ζ := τ + ζ (mod 1).

Then β is a 1-d Brownian bridge.

Let us now go back to the analysis for να . Thanks to (3.12), one can write, that for
a generic ϕ ∈ Cb(H0),

∫
H0

ϕ(ξ)να(dξ) = 1

μ(Kα)

∫
Kα

ϕ(ξ)μ(dξ),

where we recall that μ is the distribution of the 1-d Brownian bridge. Now we apply
Theorem 3.4 in order to express μ in terms of the distribution ν of the 3-d Bessel
bridge. We get

∫
H0

ϕ(ξ)να(dξ) = 1

μ(Kα)

∫ 1

0
dr
∫
K0

ϕ(ξ·⊕r − ξr )1Kα (ξ·+r − ξr ) ν(dξ). (3.14)

In addition, if ξ ∈ K0, where K0 is defined as in (3.2) with α = 0, we have ξ ≥ 0 and
ξ(0) = ξ(1) = 0. Therefore, for any r ∈ [0, 1] we have

ξ·⊕r − ξr ≥ −α ⇐⇒ ξ· − ξr ≥ −α ⇐⇒ ξr ≤ α + ξ· ⇐⇒ ξr ≤ α.

Plugging this elementary relation into (3.14), we obtain

∫
H0

ϕ(ξ)να(dξ) = 1

μ(Kα)

∫ 1

0
dr
∫
K0

ϕ(ξ·⊕r − ξr )1[0,α](ξr ) ν(dξ). (3.15)

We now proceed by splitting the right hand side of (3.15) in two terms:

∫
H0

ϕ(ξ)να(dξ) = 1

μ(Kα)

(
I1(α) + I2(α)

)
, (3.16)
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where we recall from (3.13) that μ(Kα) = 1 − e−2α2
, and where

I1(α) :=
∫ 1/2

0
dr
∫
K0

ϕ(ξ·⊕r − ξr )1[0,α](ξr )ν(dξ), (3.17)

I2(α) :=
∫ 1

1/2
dr
∫
K0

ϕ(ξ·⊕r − ξr )1[0,α](ξr )ν(dξ). (3.18)

In the sequel, we will only handle the term I1(α), while the other term I2(α) can
be treated exactly along the same lines. The approach to addressing I1(α) involves
conditioning the integration in I1(α) to the values of ξr . To this aim, we recall that
classical considerations on Bessel bridge show that the density of ξr is of the form

ν (ξr ∈ dy) = gr(1−r)(y)dy, with gτ (y) :=
√

2

πτ 3
y2 exp

(
− y2

2τ

)
, τ > 0, y ≥ 0.

(3.19)

Denoting by δϕ(r , y) the integration of ϕ with respect to ν conditional on ξr = y, we
end up with

I1(α) =
∫ 1/2

0
dr
∫ α

0
dy gr(1−r)(y)δϕ(r , y).

Recalling (3.19), by preforming a change of variable y/
√
r(1 − r) �→ y, we can

deduce that

I1(α) =
∫ 1/2

0
dr
∫ α

r(1−r)

0
dy g1(y) δϕ

(
r , [r(1 − r)]1/2y

)
.

Moreover, r(1−r) ≤ 1/4 for every r ∈ [0, 1/2]. Some elementary computations thus
imply a new decomposition for I1(α) of the form

I1(α) = I1,1(α) + I1,2(α) (3.20)

where

I1,1(α) :=
∫ 1/2

0
dr
∫ 2α

0
dy g1(y)δϕ

(
r , [r(1 − r)]1/2y

)
, (3.21)

I1,2(α) :=
∫ ∞

2α
dy g1(y)

∫ ρ(α,y)

0
dr δϕ

(
r , [r(1 − r)]1/2y

)
, (3.22)

and the function ρ being defined as

ρ(α, y) := 1

2

(
1 −

√
1 − (2α/y)2

)
. (3.23)
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In particular in the term I1,2(α) of the previous decomposition, we have exchanged
the integration order in r and y.

Let us analyze the term I1,1(α) in (3.21). In view of (3.13) and g1(y) as defined
in (3.19) with τ = 1, some easy considerations on definite integrals yield

lim
α↓0

I1,1(α)

μ(Kα)
= lim

α↓0

√
2/π

1 − e−2α2

∫ 2α

0
dy y2e−y2/2

∫ 1/2

0
drδϕ

(
r , [r(1 − r)]1/2y

)
= 0.

(3.24)

As far as the term I1,2(α) in (3.22) is concerned, it still deserves a detailed analysis
for which we can refer to [53]. Let us just mention that, since ρ(α, y) as spelled out
in (3.23) is approximately (α/y)2 whenever α → 0, then

lim
α↓0

I1,2(α)

μ(Kα)
= lim

α↓0

√
2/π

1 − e−2α2

∫ ∞

2α
dy y2e−y2/2

∫ (α/y)2

0
dr δϕ

(
r , [r(1 − r)]1/2y

)

= lim
α↓0

(√
2/π

2α2 α2
∫ ∞

2α
dy e−y2/2(y/α)2

∫ (α/y)2

0
dr

)

× lim
r↓0 δϕ

(
r , [r(1 − r)]1/2y)

=1

2

∫
K0

ϕ(ξ)ν(dξ), (3.25)

where we recall that ν is the law of the 3-d Bessel bridge. The last identity in rela-
tion (3.25) stems from the fact that

lim
r↓0 δϕ

(
r , [r(1 − r)]1/2y

)
= lim

r↑1 δϕ

(
r , [r(1 − r)]1/2y

)
=
∫
K0

ϕ(ξ)ν(dξ).

The detailed proof the aforementioned result can be found in [53, Lemma 6]. Intu-
itively, this result arises because as r ↓ 0 or ↑ 1, the conditioning event {ξr =
[r(1 − r)]1/2 y} approaches the entire sample space.

Summarizing our considerations, plugging (3.24) and (3.25) into (3.20), we find
that

lim
α↓0

I1(α)

μ(Kα)
= 1

2

∫
K0

ϕ(ξ)ν(dξ). (3.26)

As mentioned above, I2(α) in (3.18) can be handled in the same way. Reporting (3.26)
into the decomposition (3.16), this concludes the proof of Theorem 3.1.

Remark 3.5 As seen from our sketch of the proof for Theorem 3.1, the identification
of an invariant measure for the stochastic heat equation reflected at 0 hinges upon
several key components. First, it relies on identifying an invariant measure for the
Ornstein-Uhlenbeck process and associated gradient systems (this step is borrowed
again from Da Prato-Zabczyk’s series of books, see [21, Theorem 6.2.1 and Section
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8.6]). Additionally, the relationship between the 1-d Brownian bridge conditioning
on nonnegative sample paths and the 3-d Bessel bridge (see Proposition 3.3) plays
a crucial role, which provides a nice representation of the invariant measure as in
Theorem 3.1. The invariant measure presented in Theorem 3.1 is unique, which can
be deduced by comparing the asymptotic behaviors of X ξ1

t and X ξ2
t , which are solu-

tions to (3.3) reflected at 0 with initial datum ξ1 and ξ2 respectively. While Zambotti’s
original work [53] does not explicitly state this uniqueness, it was later affirmed in a
broader context by Yang and Zhang [52, Theorem 2.2] by adopting a coupling method
from Mueller [45]. Regarding the equation (3.3), Zambotti and his collaborators have
conducted additional studies, such as deriving an integration by parts formula with
respect to the 3-d Bessel bridge in [54], and exploring fine properties of the contact
set {(t, x); u(t, x) = 0} in [26, 55]. In addition to the aforementioned works, fur-
ther investigations into ergodicity and invariant measures for stochastic PDEs with
reflection have been pursued in various scholarly articles, see, e.g., [39, 47, 58].

4 Ergodicity with degenerate noise

We will now examine a second departure from the Da Prato-Zabczyk standard
setting, which concerns degenerate situations for the noise. Namely we have men-
tioned that uniqueness and ergodicity of the invariant measure occurs under the
non-degeneracy assumption (2.16). In particular, this implies that W should be truly
infinite-dimensional (or otherwise stated Rank(BB∗) = ∞).

In this section we will describe a celebrated result by Hairer and Mattingly [37] in
which ergodicity is achieved in spite of a finite-dimensional noise. The result in [37] is
proved for stochasticNavier-Stokes equations, which arewell-known systems describ-
ing the time evolution of an incompressible fluid. We consider here a version of the
equation for x ∈ R

2, written with the notation of Section 2 as

dut + (ut · ∇) ut = ν�ut − ∇ pt + ξt , div u = 0, (4.1)

where ut (x) ∈ R
2 denotes the value of the velocity field at time t and position x ,

pt (x) denotes the pressure, and ξt (x) is an external force field acting on the fluid. In
the stochastic setting the driving force ξ is a Gaussian field which is white in time and
colored in space.

The existence of an invariant measure for the stochastic PDE (4.1) can be proved
by some “soft” techniques using the regularization and dissipativity properties of
the flow [20, 32]. However, showing the uniqueness of the invariant measure is a
challenging problem for at least two reasons:

(i) The proof of uniqueness requires a detailed analysis of the nonlinearity.
(ii) In fact the nonlinearity in (4.1) can balance the degeneracy ofW and produces the

unique invariant measure. It is thus really at the heart of the analysis.

This section is devoted to a brief explanation of those mechanisms. It is structured as
follows: we will first fix some notation and state the main result of [37] in Section 4.1.
Section 4.2 will then be devoted to a brief explanation of the main idea in the proof.
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4.1 Setup and ergodicity of Navier-Stokes equations

the framework used in [37] is the so-called vorticity formulation of the Navier-Stokes
equation, which will yield a formulation close to (2.7). Consider (4.1) on the torus
T
2 := [−π, π ]2 driven by a Gaussian noise ξ . For a divergence-free velocity field,

the vorticity X is defined by X := ∇ ∧ u = ∂2u1 − ∂1u2. Note that the velocity
and vorticity formulations are equivalent since u can be recovered from X and the
condition ∇ · u = 0. With this notation it can be proved that the vorticity formulation
for the stochastic Navier-Stokes equation is

dXt = ν
Xt dt + B(X , X) dt + Q dWt , X0 = x0 , (4.2)

where
 is the Laplacianwith periodic boundary conditions and B(u, w) = −(u ·∇)w

is the usual Navier-Stokes nonlinearity. In what follows, we will focus on the vorticity
formulation of the problem given by equation (4.2). Our state space for X will be
H = L2

0(T
2), the space of real-valued square-integrable functions on the torus with

vanishing mean.
We now turn to a description of the finite dimensional noise QdWt in (4.2). To this

aim, we start by introducing a convenient way to index the Fourier basis of H . Namely
we write Z2\{(0, 0)} = Z

2+ ∪ Z
2−, where

Z
2− :=

{
(k1, k2) ∈ Z

2| − k ∈ Z
2+
}

and

Z
2+ :=

{
(k1, k2) ∈ Z

2|k2 > 0
}

∪
{
(k1, 0) ∈ Z

2|k1 > 0
}

.

Our set of oscillatory functions is defined in the following way for all k ∈ Z
2\{(0, 0)}:

for all x ∈ T
2 we set

fk(x) =
{
sin(k · x), if k ∈ Z

2+;
cos(k · x), if k ∈ Z

2−.
(4.3)

For the remainder of the section, we also fix a set

Z0 = {kn; n = 1, . . . ,m} ⊂ Z
2\{(0, 0)}, (4.4)

which corresponds to the set of driving modes of equation (4.2). We are now ready to
introduce our finite dimensional noise.

Definition 4.1 In equation (4.2), the finite dimensional noise QWt is defined as fol-
lows: we start from a R

m-valued Wiener process W defined on a probability space
(�,F ,P). Recall that fk is given in (4.3) and denote by {en; n = 1, . . . ,m} the stan-
dard basis of Rm . Define Q : Rm → H by Qen = qn fkn , where the qn are some
strictly positive numbers, and the wave numbers kn are given by the set Z0. Then for
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t ≥ 0 and x ∈ T
2 we have

QWt (x) =
m∑

n=1

qnW
n
t fkn (x). (4.5)

Notice that QWt is an element of H = L2
0(T

2).

The main result of [37], achieving uniqueness for the invariant measure in spite of
having a finite-dimensional noise in (4.5), can now be summarized as follows.

Theorem 4.2 Let Z0 satisfy the following assumptions:

A1. There exist at least two elements in Z0 with different Euclidean norms.
A2. The set of integer linear combinations of elements of Z0 generates Z2.

Then equation (4.2) has a unique invariant measure on H.

Remark 4.3 Condition A2 above is equivalent to the easily verifiable condition that
the greatest common divisor of the set {det(k, l) : k, l ∈ Z0} is 1, where det(k, l) is
the determinant of the 2 × 2 matrix with columns k and l.

Example 4.4 Let Z0 = {(1, 0) , (−1, 0), (1, 1), (−1,−1)}. It is clear that Z0 satisfies
the assumptions of Theorem 4.2. Therefore, equation (4.2) is ergodic with degenerate
driving noise

QW (t, x) = W1(t) sin(x1) + W2(t) cos(x1) + W3(t) sin(x1 + x2)

+ W4(t) cos(x1 + x2).

4.2 Main idea in the proof of Theorem 4.2

The general criterion for uniqueness of the stationary measure is taken again from Da
Prato-Zabczyk’s monograph [21]. Namely it is a well-known and much-used fact that
the strong Feller property, combined with some irreducibility of the transition proba-
bility, implies the uniqueness of the invariant measure. Denote by Pt the underlying
semigroup as featured in (2.10). In order to establish the strong Feller property of Pt ,
one usually resorts to an integration by parts argument in theMalliavin calculus sense,
which we now describe.

4.2.1 Malliavin calculus approach in a non-degenerate case

Having in mind that the strong Feller property is a crucial step towards uniqueness of
the invariant measure, let us recall a basic criterion allowing to establish this type of
result (see [21, Lemma 7.1.5]).

Proposition 4.5 A semigroup Pt on a Hilbert space H is strong Feller if, for all ϕ :
H → R with ‖ϕ‖∞ and ‖∇ϕ‖∞ finite and for all t > 0 one has

|∇Ptϕ(x)| ≤ C(‖x‖) ‖ϕ‖∞, (4.6)
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where C : R+ → R is a fixed nondecreasing function.

Interestingly enough, strong Feller properties can be deduced fromMalliavin calcu-
lus considerations. To this aim, let us introduce some additional notation. First denote
by �t : C ([0, t];Rm) × H → H the Itô map such that the solution to (4.2) can
be written Xt = �t (W , X0) for every initial condition X0 ∈ H and almost every
realization of W . Then the infinitesimal variation of Xt with respect to a perturbation
ξ ∈ H of the initial condition is given by

Jtξ := lim
ε→0

�t (W , X0 + εξ) − �t (W , X0)

ε
. (4.7)

In addition, the infinitesimal variation of Xt with respect to a perturbation of the
Wiener process in the direction of V (s) = ∫ s

0 v(r)dr with v ∈ L2([0, T ]; H) is given
by the Malliavin derivative

DvXt = lim
ε→0

�t (W + εV , X0) − �t (W , X0)

ε
. (4.8)

We now state the lemma relating Malliavin derivatives and the strong Feller property.
Notice that it is proved here in a rather informal way.

Lemma 4.6 Let us assume that for every direction ξ ∈ H one can find v = v(ξ) lying
in the space L2 ([0, T ], H), such that

DvXt = Jtξ.

Then the semigroup Pt enjoys the strong Feller property as given in Proposition 4.5.

Proof By definition of the semigroup Pt , we have

〈∇Ptϕ(X0), ξ 〉 = E [∇ϕ(Xt ) Jtξ ] = E
[∇ϕ(Xt )DvXt

]
,

where the second identity stems from our assumption DvXt = Jtξ . Now it is easily
seen that ∇ϕ(Xt )DvXt = Dv (ϕ(Xt )). Hence a standard integration by parts in the
Malliavin calculus sense yields

〈∇Ptϕ(X0), ξ 〉 = E

[
ϕ(Xt )

∫ t

0
v(s)dWs

]
.

Therefore we get

|〈∇Ptϕ(X0), ξ 〉| ≤ ‖ϕ‖∞‖v‖L2([0,T ],H),

fromwhich inequality (4.6) is easily deduced. This concludes the proof of Lemma 4.6.
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Thanks to Lemma 4.6, the strong Feller property for Xt is reduced to a relation
involving itsMalliavin derivative.However, the ability tofindav such thatDvXt = Jtξ
relies on some invertibility of theMalliavinmatrix on a proper space. This requirement
poses some major technical difficulty in an infinite dimensional setting. In addition, a
more fundamental question is whether one should expect the strong Feller property for
an infinitely dimensional system at all when the noise is degenerate. Indeed, it seems
that the only result showing the strong Feller property for an infinite dimensional
system where the covariance of the noise does not have a dense range is given in [37].
However, this still requires the forcing to act in a non-degenerate way on a subspace
of finite codimension. A different approach is thus necessary for degenerate noises
like the one described in Definition 4.1.

4.2.2 Malliavin calculus approach in the degenerate case

A key observation of Hairer andMattingly [37] is that the strong Feller property is nei-
ther essential nor natural for the study of ergodicity in dissipative infinite-dimensional
systems. To provide an alternative, they introduced the following weaker asymptotic
strong Feller property which is satisfied by the system under consideration and is
sufficient to give ergodicity.

Let d be a pseudo-metric on X . Given two positive finite Borel measures μ1, μ2
on X with equal mass, denote by C(μ1, μ2) the set of positive measure on X 2 with
marginals μ1 and μ2. Define

‖μ1 − μ2‖d := inf
μ∈C(μ1,μ2)

∫
X 2

d(x, y)μ(dx, dy).

Definition 4.7 AMarkov transition semigroup Pt on a Polish spaceX is called asymp-
totically strong Feller at x if there exists a totally separating system of pseudo-metrics
{dn; n ≥ 1} for X and a sequence {tn; n ≥ 1} with tn > 0 such that

lim inf
U∈Ux

lim sup
n→∞

sup
y∈U

∥∥Ptn (x, ·) − Ptn (y, ·)
∥∥
dn

= 0,

where Ux is the collection of all open sets containing x . It is called asymptotically
strong Feller if this property holds at every x ∈ X .

Remark 4.8 It is proved in [37, Corollary 3.5] that if {dn; n ≥ 1} is a total separating
system of pseudo-metrics for X , then ‖μ1 − μ2‖TV = limn→∞ ‖μ1 − μ2‖dn for any
two positive measures μ1 and μ2 with equal mass on X .

Remark 4.9 Note that when tn = t for all n, the transition probabilities Pt (x, ·) are
continuous in the total variation topology and thus Ps is strong Feller at times s ≥ t .
In order to show (4.2) satisfies the asymptotic strong Feller property, one will take
tn = n as will be seen below.

The following criterion for the asymptotic strong Feller property, generalizing
Proposition 4.5, is then proposed in [37].
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Proposition 4.10 Let {tn; n ≥ 1} and {δn; n ≥ 1} be two positive sequences with {tn}
nondecreasing and {δn} converging to zero. A semigroup Pt on a Hilbert space H is
asymptotic strong Feller if, for all ϕ : H → R with ‖ϕ‖∞ and ‖∇ϕ‖∞ finite, we have

∣∣∇Ptnϕ(x)
∣∣ ≤ C(‖x‖) (‖ϕ‖∞ + δn‖∇ϕ‖∞) , (4.9)

where C : R+ → R is a fixed nondecreasing function.

Remark 4.11 The asymptotic strong Feller property can be related to Malliavin calcu-
lus notions. The point is that the Malliavin matrix is not invertible in our degenerate
context. Therefore we are not able to construct a v ∈ L2([0, T ],Rm) for a fixed time
T that produces the same infinitesimal shift in the solution as a perturbation ξ in
the initial condition. Instead, we can construct a v ∈ L2([0,∞);Rm) such that an
infinitesimal shift of the noise in the direction v provides asymptotically the same
effect as an infinitesimal perturbation in the direction ξ . In other words, one has
‖Jtξ − Dv0,t Xt‖ → 0 as t → ∞, where v0,t is the restriction of v on the interval
[0, t]. Set ρt := Jtξ − Dv0,t Xt . Then one has the approximate integration by parts
formula:

〈∇Ptϕ(X0), ξ 〉 = E ((∇ϕ) (Xt )Jtξ)

= E
(
(∇ϕ)(Xt )Dv0,t Xt

)+ E ((∇ϕ)(Xt )ρt )

= E

(
ϕ(Xt )

∫ t

0
v(s)dWs

)
+ E ((∇ϕ)(Xt )ρt ) , (4.10)

from which it follows that

|〈∇Ptϕ(X0), ξ 〉| ≤ ‖ϕ‖∞ × E

(∣∣∣∣
∫ t

0
v(s)dWs

∣∣∣∣
)

+ ‖∇ϕ‖∞ × E (‖ρt‖) .

If E (‖ρt‖) is small, one easily derives (4.9) from (4.10). Notice that the explicit
construction of v in (4.10) is highly non-trivial and rather technical. We refer the
interested readers to the original paper for details. Instead, we make the following
remark regarding the construction of v.

Remark 4.12 In order to construct a suitable v one needs to better incorporate the path-
wise smoothing which the dynamics possesses at small scales. Due to the degenerate
nature of the noise, v will be constructed as a non-adapted process. The first term
in (4.10) is thus understood as a Skorohod integral. In order to provide a good esti-
mate of this term, one has to have good control of the “low modes” when they are not
directly forced by the noise and when Girsanov’s theorem cannot be used directly (cf.
Theorem 4.12 in [37]). This is the heart of the analysis for the structure of theMalliavin
matrix for equation (4.2). It exploits the algebraic structure of the nonlinearity, which
transmits the randomness to the non-directly exited unstable directions. This results
in an associated diffusion which in the end is hypoelliptic (see [42] for more details).

With Remarks 4.11 and 4.12 in hand, let us conclude by stating a proposition which
yields the asymptotic Feller property for the stochastic Navier-Stokes equation.
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Proposition 4.13 Let Pt be the semigroup related to equation (4.2). Then for all η > 0,
there exist constants C, δ > 0 such that for every Fréchet differentiable function ϕ

from H to R one has the bound

‖∇Pnϕ(X0)‖ ≤ C exp
(
η‖X0‖2

)
× (‖ϕ‖∞ + ‖∇ϕ‖∞e−δn) , (4.11)

for every X0 ∈ H and n ∈ N. Otherwise stated, the asymptotic strong Feller property
of Proposition 4.10 holds true for equation (4.2) by considering tn = n and δn = e−δn.

We close this section by recalling that the asymptotic strong Feller property stated
in Proposition (4.13) leads to ergodicity. We skip those considerations for sake of
conciseness and we refer to [37] for more details. Also notice the reference [41],
based on control type arguments.

5 Phase transition in ergodicity inR
d with d ≥ 3

This section is devoted to another very important degenerate case for equation (2.8).
That is, instead of considering a degenerate noise Ẇ in (2.8), we will assume that the
diffusion coefficient B can vanish. This situation occurs in particular when consider-
ing an important system called parabolic Anderson model (referred to as PAM in the
sequel). Our main message here is that inRd when d ≥ 3, one can observe phase tran-
sitions (in terms of the noise intensity) between a situation where an invariant measure
exists and a very different case with no invariant measure. We begin with a series of
preliminary remarks in Section 5.1. Then we state some phase transition results for
the parabolic Anderson model and related equations in Section 5.2. Eventually we
will derive a new result about convergence in distribution to the invariant measure in
Section 5.3.

5.1 Preliminary remarks

So far we have expressed our stochastic PDE’s in theDa Prato-Zabczyk infinite dimen-
sional setting. However, most of the results concerning parabolic Anderson models
use the multiparametric setting for SPDEs popularized byWalsh [51] and Dalang [24,
25]. The current section will thus use this framework. The reader is referred to [27] for
a correspondence between the infinite-dimensional and the multiparametric settings.
With this notational warning in mind, in this section we review existence results for
the invariant measure of the following stochastic heat equation in Rd with d ≥ 3:

(
∂

∂t
− 1

2



)
u(t, x) = b(x, u(t, x))Ẇ (t, x), for x ∈ R

d and t > 0. (5.1)
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In equation (5.1), b(x, u) is uniformly bounded in the first variable and globally Lip-
schitz continuous in the second variable, i.e., for some constants Lb > 0 and L0 ≥ 0,

|b(x, u) − b(x, v)| ≤ Lb|u − v| and |b(x, 0)| ≤ L0 for all u, v ∈ R and x ∈ R
d .

(5.2)
Notice that our hypothesis (5.2) allows the degenerate value b(x, 0) = 0. In particular,
it covers the linear case b(x, u) = λu, which is the aforementioned PAM (see [8]). In
this note, we will specifically focus on the degenerate case:

b(x, 0) ≡ 0, for all x ∈ R
d . (5.3)

The noise Ẇ (t, x) featured in equation (5.1) is defined in a standard way within the
random field framework for stochastic PDE’s. Specifically, Ẇ is defined on a complete
probability space (�,F ,P) with the natural filtration {Ft }t≥0 generated by the noise,
it is a centered Gaussian noise that is white in time and homogeneously colored in
space. Its covariance structure is given by

E [W (ψ)W (φ)] =
∫ ∞

0
ds
∫
Rd

�(dx)(ψ(s, ·) ∗ φ̃(s, ·))(x), (5.4)

where ψ and φ are continuous and rapidly decreasing functions, φ̃(x) := φ(−x), “∗”
refers to the convolution in the spatial variable, and � is a nonnegative and nonnega-
tive definite tempered measure on Rd that is commonly referred to as the correlation
measure. The Fourier transform1 of � (in the generalized sense) is also a nonnegative
and nonnegative definite tempered measure, which is usually called the spectral mea-
sure and is denoted by f̂ (dξ). Moreover, in the case where � has a density f , namely
�(dx) = f (x)dx , we write f̂ (dξ) as f̂ (ξ)dξ . Existence and uniqueness of (5.1) for
bounded (resp. rough) initial conditions were established in [24] (resp. [16]) under
Dalang’s condition

ϒ(β) := (2π)−d
∫
Rd

f̂ (dξ)

β + |ξ |2 < ∞ for some (and hence all) β > 0. (5.5)

Moreover, existence and uniqueness results in this setting rely on Itô type estimates
which are elaborations of (5.4). Namely, for an adapted process v = {v(t, x); t ≥
0, x ∈ R

d}, we have

E

[(∫ t

s

∫
Rd

v(r , y)W (dr , dy)

)2
]

=
∫ t

s
dr
∫∫

R2d
f (y − y′)E[v(r , y)v(r , y′)] dydy′.

(5.6)

Ideally onewould like to consider general space-time covariance structures like in [38].
However fractional dependences in time yield a much more complicated picture in
terms of ergodic behavior, as assessed e.g in [28].

1 We use the following convention and notation for Fourier transform: Fψ(ξ) = ψ̂(ξ) :=∫
Rd e−i x ·ξ ψ(x)dx for any Schwarz test function ψ ∈ S(Rd ).
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In the literature (starting from Da Prato-Zabczyk’s contributions summarized in
Section 2.2), the existence of invariant measures for SHE is often studied with a drift
term and a general second order differential operator A:

(
∂

∂t
− A

)
u(t, x) = g(x, u(t, x)) + b(x, u(t, x))Ẇ (t, x), for x ∈ O, t > 0.

(5.7)

In order to control the growth of the solution’s moments, both the drift term g and the
differential operator A (paired with its domain O and boundary conditions) have to
be sufficiently dissipative to counterbalance the diffusion part that is governed by the
diffusion coefficient b and the noise correlation function/measure f . We claim that
the setup as given in (5.1) (or the one in Chen and Eisenberg [12]) is among the most
challenging ones. This is because:

(i) The semigroup for a bounded domain O ⊆ R
d usually has stronger contraction

properties than that for the whole space R
d . This bounded domain assumption

is the setup for Cerrai [9, 10], Brzeźniak and Ga̧tarek [7], and Bogachev and
Röckner [6]. One can find more related references from the above three papers.
For the random field approach, Mueller [45] studied the equation on a torus with
the operator ∂2

∂x2
− α, with α > 0. This parameter α provides an exponential

dissipative effect; see Theorem 1.2 (ibid.).

In the following, we will focus on works where the spatial domain is the entire
space Rd . There are much fewer works in this setting; notably, we will comment on
the following references [2, 12, 30, 36, 43, 44, 50]. Most of the works in this line have
been carried out in some weighted L2(Rd) space with a weight function ρ, referred as
L2

ρ(Rd). This setup was initially introduced by Tessitore and Zabczyk [50]. However,
there are two exceptions: Eckmann and Hairer used the L∞ (R) space and Gu and
Li [36] used the space of continuous functions denoted by C

(
R
d
)
.

(ii) It is, in general, much harder to handle the degenerate diffusion coefficient case:
b(u) = u. Eckmann and Hairer [30] studied the SHE on R, albeit with an additive
noise (that is b(·) ≡ 1 in (5.7)). In that case, a nonlinear drift term of the form
g(u) = u(1−u2) contributes to a sufficient amount of dissipativeness. A different
setting is provided by Misiats, Stanzhytskyi et al [44]. Namely, they assume that
the diffusion coefficient b satisfies the following condition:

|b(x, u1) − b(x, u2)| ≤ L ϕ(x)|u1 − u2|,

for some function ϕ(x) that decays fast enough. In a slightly earlier paper of
Misiats, Stanzhytskyi et al [43], they also require b to be bounded.

Now we will further concentrate on works that allow the degenerate case b(u) = u
in order to be able to cover the parabolic Anderson model.

(iii) Lacking a dissipative drift term makes the problem more challenging. Indeed,
Assing and Manthey’s work [2] allows b(u) = u. Within their framework, they
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can afford a space-time white noise in d = 1. However, a trace-class noise (i.e.,
Q in (2.2) being a trace-class operator) has to be considered in d ≥ 2. Such
general setup is achieved by a strong dissipative condition on the drift term g in
the following form: for some constants C and κ > 0, it holds that

ug(u) ≤ C − κu2, for all u ∈ R.

In particular, g cannot vanish.

Now let us further narrow down to works without a drift term. In this case, only
the following papers are left: [12, 36, 50]. In all these works, without the help of the
drift term, one has to use the weak dissipative property of the heat kernel on the whole
space coming from the factor t−d/2 of the heat kernel inRd . If we want this dissipative
effect to be strong enough, this imposes d ≥ 3.

(iv) The analysis of a model like PAM is simplified when one considers a trace-class
noise in (5.1). This is what is assumed in Gu and Li [36]: the spatial covariance
measure � in (5.4) is of the form �(dx) = f (x)dx , with

f (x) =
∫
Rd

φ(x + y)φ(y)dy, for some φ ∈ C∞
c (Rd ;R+) . (5.8)

This ensures that the noise is trace-class, since
∫
Rd f̂ (ξ)dξ = f (0) = ‖φ‖2

L2(Rd )
<

∞. It ismuchmore challenging to includemore singular noiseswhich are not trace-
class. This is achieved in Tessitore and Zabczyk [50], where the conditions on the
noise are given by Hypothesis 2.1 (i) and especially (3.4) of their paper. However,
those conditions are very involved and sometimes difficult to check; see Section 5.2
of [12] for a detailed discussion. In contrast, the work by Chen and Eisenberg [12]
provides the following concise condition on the correlation function in order to
get a phase transition for the existence of an invariant measure:

∫
Rd

f̂ (dξ)

|ξ |2 ∧ |ξ |2(1−α)
< ∞, for some α ∈

(
4ϒ(0)L2

b, 1
)

, (5.9)

where Lb is the Lipschitz constant as given in (5.2); see Remark 1.2 or (1.19)
(ibid.). Note that the above condition (5.9) implicitly requires that

ϒ(0) := (2π)−d
∫
Rd

f̂ (dξ)

|ξ |2 < ∞. (5.10)

Note also that the correlation in (5.8) satisfies condition (5.9), by noticing that φ̂

is a Schwarz function. It is worth pointing out that the trace-class noise condition
f (0) < ∞ neither implies nor is implied by condition (5.9). In particular, one
easily finds some noises that are not trace-class but satisfy condition (5.9). We
briefly discuss Bessel and Riesz kernels below.
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(a) Let fs(·) denote the family of Bessel kernels2 with parameter s > 0 on R
d ,

i.e.,

fs(x) = F−1

[
1(

1 + |ξ |2)s/2
]

(x), for x ∈ R
d .

Since fs is both nonnegative and nonnegative definite, it can be served either
as correlation function or the spectral measure. On the one hand (see Propo-
sition 5.2 of [12]), assuming d ≥ 3 and using fs as the correlation function,
condition (5.10) (resp. condition (5.9)) is satisfied for all s > d − 2 (resp.
s > d − 2(1 − α)). On the other hand, fs is a trace-class operator if and only
if s > d since

∫
Rd

f̂s(ξ)dξ =
∫
Rd

(
1 + |ξ |2

)−s/2
dξ < ∞ ⇐⇒ s > d.

Hence, all Bessel kernels fs(·)with s ∈ (d−2(1−α), d] provide examples of
correlation functions that are not trace-class operators but can ensure existence
of a nontrivial invariant measure. On the other hand, when using the Bessel
kernel fs as the spectral measure, as explained in Proposition 5.3 of [12],
assuming again d ≥ 3, conditions (5.10) and (5.9) are satisfied for all s > 2
and for all s > 2(1 − α), respectively. Hence, correlation functions f̂s(x) =(
1 + |x |2)−s/2

with s > 2(1 − α) provide examples of trace-class operators
that have long-range heavy-tail correlations, in contrast to the finite-range
correlation in (5.8). Note that fs , used as correlation functions, also provides
long-range correlation but with a light tail, i.e., some exponential tail.

(b) The Riesz kernel f (x) = |x |−β plays a prominent role of in the study of the
homogeneousGaussian noise, since it provides heavy-tailed correlations and is
singular at zero. In particular, it is not a trace-class operator. However, it is easy
to check that it won’t satisfy either conditions (5.9) or (5.10). Example 5.10
of [12] provides kernel functions that have similar behaviors to the Riesz kernel
with power blow-up near zero at some rate and power decay near infinity at
possibly a different rate. To be more precise, for any s1 and s2 ∈ (0, d), the
Riesz-type kernel with parameters (s1, s2) is defined as a combination of the
Bessel kernel and its Fourier transform:

fs1,s2(x) := fs1(x) + f̂s2(x) or equivalently f̂s1,s2(ξ) := f̂s1(ξ) + fs2(ξ).

(5.11)

It is clear that fs1,s2 is both nonnegative and nonnegative definite. From the
properties of the Bessel kernel and its Fourier transform, we see that

fs1,s2(x) �
{

|x |s1−d |x | → 0,

|x |−s2 |x | → ∞.

2 Interested readers can refer Section 1.2.1 of [35] for more details of the Bessel kernel.

123



Stochastics and Partial Differential Equations: Analysis and Computations

Assume d ≥ 3. As explained in Example 5.10 of [12], condition (5.10) holds
provided s1 > d − 2 and s2 > 2 and condition (5.9) holds provided that
s1 > d − 2(1 − α) and s2 > 2(1 − α). Similar to the Bessel kernel case,
fs1,s2(x) is a trace-class operator if and only if s1 > d. Let us assume d ≥ 3.
Then, when used as the correlation function, the Riesz-type kernel fs1,s2 with
s1 ∈ (d − 2(1 − α), d) and s2 > 2(1 − α) provides non trace-class operators
that both have heavy-tail correlations and can ensure existence of a nontrivial
invariant measure.

(v) Due to the importance of the Dirac delta initial condition [1] and the stationary
initial condition (i.e., the two-sided Brownian motion as the initial data) pointed
out in [4], it would be preferable to be able to include more general initial condi-
tions, that are neither bounded at one point nor at infinity. Chen and Dalang [11]
introduced the so-called rough initial conditions to cover these unbounded initial
conditions; see also [14, 16]. To be more precise, a rough initial condition μ refers
to a deterministic, locally finite, regular, signed Borel measure that satisfies the
following integrability condition at infinity:

∫
Rd

|μ| (dx) exp
(
−a|x |2

)
< ∞ for all a > 0, (5.12)

where |μ| = μ+ + μ− and μ = μ+ − μ− refer to the Hahn decomposition of
the measure μ. The work by Chen and Eisenberg [12] allows the rough initial
condition.

Remark 5.1 We would like to mention that, in terms of techniques, most of the above
works are based on the Krylov-Bogoliubov theorem (see [21, 23, 40] as well as rela-
tions (2.10) and (2.11) above). However, the work by Gu and Li [36] uses a different
argument by shifting the initial time to negative infinity. As a result, they obtain a
stronger result. The convergence there is a strong convergence. The arguments rely
critically on the stationarity of the solution u(t, x), which is a consequence of the
constant one initial condition. Nevertheless, Gu and Li pointed out that this constant
initial condition can be perturbed by an L∞(Rd) ∩ L1(Rd) function; see Remark 3.6
(ibid.). In particular, it is not clear in their framework whether the constant initial
condition can be perturbed by a Dirac delta measure. We will go back to this approach
in Section 5.3.

5.2 Phase transition for themoments and invariant measures

In this part, let us state precisely the phase transition phenomenon under condi-
tions (5.10) and (5.9). Recall that the solution to (5.1) is understood as the mild
solution:

u(t, x) = J0(t, x) +
∫ t

0

∫
Rd

p(t − s, x − y) b(y, u(s, y))W (ds, dy), (5.13)
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where the stochastic integral is interpreted as theWalsh integral ([24, 51]) and J0(t, x)
refers to the solution to the homogeneous equation, namely,

J0(t, x) = J0(t, x;μ) :=
∫
Rd

p(t, x − y)μ(dy) = [pt ∗ μ](x). (5.14)

Here and throughout the rest of the paper, we use p(t, x), or sometimes pt (x), to
denote the heat kernel: p(t, x) = pt (x) := (2π t)−d/2 exp

(−|x |2/(2t)).
The first result asserts that under the cone condition (5.17) below, the second

moments of the solution exhibit a phase transition depending on the noise intensity,
namely, the values of Lb and l p in (5.2) and (5.17), respectively. Let us first define the
upper and lower (moment) Lyapunov exponents of order p (p ≥ 2) by

mp(x) := lim sup
t→+∞

1

t
logE

(|u(t, x)|p) , mp(x) := lim inf
t→+∞

1

t
logE

(|u(t, x)|p) .
(5.15)

Then we get the following bounds on the exponents supx∈Rd m(x) and infx∈Rd m(x)
under hypothesis (5.10).

Theorem 5.2 (Theorem 1.3 of [16]) Let u be the solution to (5.1) starting from an
initial condition μ, which is a nonnegative Borel measure on Rd such that

∫
Rd

e−γ |x |μ(dx) < ∞ , for all γ > 0. (5.16)

Assume b(x, u) = b(u) in (5.1) satisfies the cone condition:

lb := inf
x∈R

b(x)

|x | > 0. (5.17)

Recall that the covariance of the noise is given by (5.4) and is specified by a correlation
measure f satisfying (5.5). Also recall thatϒ(0) is given by (5.10). Then the following
holds true:
(i) If ϒ(0) < ∞, then for some nonnegative constants 0 < λc ≤ λc < ∞, it holds
that

⎧⎪⎨
⎪⎩

sup
x∈Rd

m2(x) = 0, if Lb < λc,

inf
x∈Rd

m2(x) > 0, if lb > λc,
(5.18)

where Lb is the Lipschitz constant as given in (5.2).
(ii) If ϒ(0) = ∞, then u(t, x) is fully intermittent, i.e., m1(x) ≡ 0 and
infx∈Rd m2(x) > 0.
(iii) The following two conditions are equivalent:

ϒ(0) < ∞ ⇐⇒ d ≥ 3 and
∫
Rd

f (z)

|z|d−2 dz < ∞. (5.19)

123



Stochastics and Partial Differential Equations: Analysis and Computations

Remark 5.3 Moments estimates like those in Theorem 5.2 are an important step
towards ergodicity, as assessed by Theorem 2.1. In the current case, relation (5.18)
for Lb ≤ λc is an indication that a Krylov-Bogoliubov type argument towards ergod-
icity can be applied. On the other hand, relation (5.18) for lb > λc rules out any type
of ergodic result. This is the announced phase transition phenomenon, in terms of
coefficients which represent noise intensity.

Remark 5.4 As part of Theorem 5.2, relation (5.19) asserts that the phase transition
phenomenon can only occur in dimension 3 or higher.

In Theorem 5.2, we have only considered initial conditions with power growth at
infinity, which are tempered/Schwarz measures. The choice of such initial conditions
is due to the fact that the corresponding solution to the homogeneous equation J0(t, x)
will only induce trivial contributions to the Lyapunov exponent. However, if we do not
focus only on Lyapunov exponents, the paper [16] establishes the following pointwise
moment bounds in case of an initial condition with exponential growth:

Theorem 5.5 Let u be the solution to (5.1) starting from a nonnegative rough initial
data μ, namely, μ is is a nonnegative Borel measure on R

d such that (5.12) holds.
Suppose that the diffusion coefficient b(x, u) = b(u) satisfies the following degenerate
condition:

b(0) = 0 , and |b(u2) − b(u1)| ≤ Lb|u2 − u1|. (5.20)

Moreover, suppose that 4L2
bϒ(0) < 1, namely, condition (5.10) holds and Lb <

(2ϒ(0))−1/2. Then

E

[
u(t, x)2

]
≤ J 20 (t, x)

L2
b

[
1 − 4L2

bϒ(0)
] , for all t ≥ 0 and x ∈ R

d , (5.21)

where we recall that J0(t, x) is defined by (5.14).

Remark 5.6 From this point onward,we have chosen toworkwith a coefficient bwhich
only depends on the variable u. Generalizations to coefficients b(x, u) are possible.

Proof of Theorem 5.5 The proof uses the contraction coefficient Lb in a Gronwall type
lemma, very similarly to what will be done in (5.62). We thus spare the details for sake
of conciseness. Moreover, this type of estimate has already been carried out in [16].
Namely note that the degenerate condition (5.20) implies that |b(x, u)| ≤ Lb|u| for
all u ∈ R uniformly in x ∈ R

d . Hence, we can invoke part (2) of Theorem 2.4 in [16].
After applying (2.10) of [16] with x = x ′ followed by (2.19) of [16] with ν = 1 and
λ = Lb, we see that

E

[
u(t, x)2

]
≤ L−2

b J 20 (t, x)H(t; 2L2
b),

where H(t; γ ) is defined in (2.14) of [16] with y = 0 and ν = 1. Then by the
second part of Lemma 2.5 of [16] with ν = 1 and γ = 2L2

b, when ϒ(0) < ∞ and
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4L2
bϒ(0) < 1, then

H(t; 2L2
b) ≤ 1

1 − 4L2
bϒ(0)

, for all t ≥ 0.

Combining these two bounds proves Theorem 5.5.

Remark 5.7 Here are some additional comments: (1) The most challenging aspect of
the paper [16] is the demonstration that the lower bound of the Lyapunov exponent is
strictly positive, i.e., the second relationship in (5.18). The difficulty comes from the
rough initial condition and the lack of Feynman-Kac representations for the moments
for the nonlinear SHE. (2) By the Burkholder-Gundy-Davis inequality (see the version
in [19, Theorem 1.4]), one can easily extend the boundedness of the second moment
to the case of p-th moments with p ≥ 2 and L0 > 0 in (5.2); see Theorem 1.7 of [14]
for more details.

Boundedness of the moments in (5.21) paves the way for the existence of invariant
measures. This was already asserted in Da Prato-Zabczyk’s setting, as recalled in (2.9)
and Remark 5.3. However, one needs to embed the random field solution in some
Hilbert space. The moment estimates in this setup are a straightforward application
of Theorem 5.2, which is given by Theorem 5.8 below. For any locally integrable
and nonnegative function ρ : R

d → R+, denote by L2
ρ(Rd) the Hilbert space of

ρ-weighted square integrable functions. We will use 〈·, ·〉ρ and ‖·‖ρ to denote the
corresponding inner product and norm, respectively:

〈 f , g〉ρ :=
∫
Rd

f (x)g(x)ρ(x)dx , and ‖ f ‖ρ :=
∫
Rd

| f (x)|2ρ(x)dx . (5.22)

The next theorem states that, under proper conditions on the noise structure and the
intensity of the noise (namely, the value of Lb), the time dependence of the moments
of the solution in any weighted L2(Rd) space comes solely from the contribution of
the initial condition.

Theorem 5.8 (Theorem 1.1 of [12] for the degenerate diffusion coefficient case) Let
u(t, x;μ) be the solution to (5.1) starting from a rough initial condition μ which
satisfies (5.12). Assume that

(i) the diffusion coefficient b satisfies the degenerate condition (5.20);
(ii) ρ : Rd → R+ is a nonnegative L1(Rd) function;
(iii) for all t > 0, the initial condition μ satisfies the condition that Gρ(t; |μ|) < ∞,

where

Gρ(t;μ) :=
∫
Rd

[(p(t, ·) ∗ μ) (x)]2 ρ(x) dx; (5.23)

(iv) the spectral measure f̂ satisfies (5.10), i.e.,ϒ(0) < ∞, and the Lipschitz constant
Lb is small enough so that 4L2

bϒ(0) < 1.
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Then there exists a unique L2(�)-continuous solution u(t, x) such that for some
constant C > 0, which does not depend on t, the following holds:

E

(
‖u(t, ·;μ)‖2ρ

)
≤ CGρ (t; |μ|) < ∞, for any t > 0, (5.24)

where we recall that the norm ‖·‖ρ is given by (5.22).

Recall that for the existence of an invariantmeasure,wewill needmoments bounded
in t (see (2.9)). However, the moment upper bound in (5.24) may still blow up as
t → ∞; see Proposition 5.1 of [12] for one example. Given the continuity of t →
Gρ (t; |μ|), one needs to impose condition (5.28) below.

Note that Theorem 5.8 above imposes no additional restrictions on the weight func-
tion, as long as it is nonnegative and integrable. However, due to the non-compactness
of the ambient space Rd , in order to extend the heat semigroup to a C0-semigroup on
a weighted L2(Rd) space one cannot use arbitrary weight functions. The notion of
admissible weight functions plays an important role.

Definition 5.9 ([50]) A function ρ : Rd �→ R is called an admissible weight function
if it is a strictly positive, bounded, continuous, and L1(Rd)-integrable function such
that for all T > 0, there exists a constant Cρ(T ) satisfying

(
p(t, ·) ∗ ρ(·))(x) ≤ Cρ(T )ρ(x) for all t ∈ [0, T ] and x ∈ R

d . (5.25)

As proved in Proposition 2.1 of [50], the weighted spaces of Definition 5.9 have nice
compactness properties. Namely, for any admissible functions ρ and ρ̃, if

∫
Rd

ρ(x)

ρ̃(x)
dx < ∞, (5.26)

then for all t > 0, the heat semigroup is compact from L ρ̃ (Rd) to Lρ(Rd). Canonical
choices of the admissible weight functions include the following examples:

ρ(x) = exp(−a|x |) a > 0, and ρ̃(x) = (
1 + |x |a)−1

a > d. (5.27)

Finally, the next theorem integrates various components, including initial data, the
noise structure (via the correlation function), the intensity of the noise (via the value
of Lb), and admissible weight functions, to establish the existence of an invariant
measure.

Theorem 5.10 (Theorem 1.3 of [12] for the degenerate diffusion coefficient case) Let
u(t, x) be the solution to (5.1) starting from a rough initial condition μ, namely, μ is
a signed Borel measure on R

d such that (5.12) holds. Assume that

(i) b(x, u) = b(u) and it verifies condition (5.20).
(ii) there are two admissible weight functions ρ and ρ̃ such that (5.26) holds and

lim sup
t→∞

Gρ̃ (t; |μ|) < ∞; (5.28)
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(iii) the spectral measure f̂ satisfies (5.10), i.e., ϒ(0) < ∞ and the Lipschitz constant
Lb is small enough such that 4L2

bϒ(0) < 1;
(iv) for some α ∈ (

4L2
bϒ(0), 1

)
, the spectral measure f̂ satisfies the following condi-

tion

ϒα(β) := (2π)−d
∫
Rd

f̂ (dξ)(
β + |ξ |2)1−α

< ∞ for some (hence all) β > 0.

(5.29)

Then we have that

(1) for any τ > 0, the sequence of laws of {Lu(t, ·;μ)}t≥τ is tight, i.e., for any
ε ∈ (0, 1), there exists a compact set K ⊂ L2

ρ(Rd) such that

L u(t, ·;μ)(K) ≥ 1 − ε, for all t ≥ τ > 0; (5.30)

(2) there exists a nontrivial invariant measure for (5.1).

Remark 5.11 Conditions (ii) and (iii) in Theorem 5.10 can be more compactly written
as (5.9). Note that condition (5.9) implicitly implies that 4ϒ(0)L2

b < 1, in order to find
an α such that (5.29) is satisfied. Once again, let us recall that it has to be interpreted
as a small intensity condition on the noisy forcing term.

In the literature, condition (5.29) is often called the strengthened Dalang’s condi-
tion. Since this condition first appeared in the paper by Sanz-Solé and Sarrà [49], we
may also call it the Sanz-Solé-Sarrà condition. The conditions on the structure and
intensity of the noise, as specified in Conditions (iii) and (iv) of the above theorem,
can be consolidated into a single condition—condition (5.9).

Remark 5.12 Note that under the degenerate condition (5.20), i.e., b(0) ≡ 0, the zero
function is an invariant measure for (5.1). This invariant measure is called the trivial
invariant measure. Once the existence of an invariant measure is obtained via the
Bogoliubov theorem (see the proof of Theorem 2.1), it is routine to show that there
exists a nontrivial one; see Theorem 4.1 of [50].

Remark 5.13 The expression 4L2
bϒ(0) in both Theorems 5.8 and 5.10 takes the formof

27L2
bϒ(0) in [12] (see (1.10b) and (1.11) ibid.). This discrepancy arises from applying

the general p-th moment bounds (for p ≥ 2), as given in (1.14) of [14], to the second
moment. These p-thmoment boundswere derived using theBurkholder-Gundy-Davis
inequality for cases where b(x, 0) may not vanish. However, when focusing specifi-
cally on the second moment, its application is unnecessary. Moreover, the degenerate
condition (5.20) further simplifies the moment bounds.

Interested readers may refer to Section 5 of [12], where Theorem 5.10 is discussed
in detail from several perspectives (initial data, weight functions, correlation functions,
and a comparison with the conditions outlined by Tessitore and Zabczyk [50]).
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5.3 The asymptotic behavior via Gu-Li’s approach

This section is devoted to establishing a new result (to the best of our knowledge). It
establishes convergence in law to the invariant distribution under the “weak disorder”
condition given by (iii) in Theorem 5.10. Specifically, suppose the correlation function
f is given by (5.8) and suppose the diffusion coefficient b depends only on the second
argument. Gu and Li proved in [36] that, when the spatial dimension d ≥ 3, the
solution u(t, ·) to the SHE (5.1) at time t with a flat initial condition converges in law
to a stationary random field in space as t → ∞. In this part, we will show that one
can extend this result to a broader class of Gaussian noises (namely, those satisfying
condition (5.9)), adapting the methods in [36]. A similar question is also considered
in [34], where the spatial correlation of the driving noise is uniformly bounded with
a Riesz type tail. With respect to the aforementioned references [34, 36] we will also
consider a broader class of initial conditions.

Theorem 5.14 Suppose that conditions (i) and (iii) of Theorem 5.10 hold. Let the
following condition (ii’) replace condition (ii) of Theorem 5.10:

(ii’) For t ≥ 0, x ∈ R and a Borel measure μ on R
d , let J0(t, x;μ) be the solution to

the homegenous equation (see (5.14)). We assume that the following limit exists:

lim
t→∞ sup

x∈Rd
|J0(t, x;μ)| < ∞. (5.31)

We also assume that the nonnegative weight function ρ is an element in L1(Rd), which
does not necessarily need to be admissible (see Definition 5.9). Recall that u(t, ·) is
the solution to (5.1). Then the following existence and uniqueness statements hold:

(1) There exists a random field Z = {Z(x); x ∈ R
d} such that Z(·) ∈ L2

ρ(Rd) a.s.
and

u(t, ·) (d)−→ Z , as t → ∞, in L2
ρ(Rd). (5.32)

(2) Suppose u1 and u2 are two solutions to (5.1) starting fromμ1 andμ2, respectively.
Assume that bothμi satisfy (5.31). Let Z1 and Z2 be the respective limiting random
fields given in part (1). Then we have

lim
t→∞ sup

x∈Rd
|J0(t, x;μ1 − μ2)| = 0 �⇒ Z1

(d)= Z2 , (5.33)

where the notation Z1
(d)= Z2 denotes that the two random fields follow the same

law.

Before the proof, we first make some remarks.

Remark 5.15 (Perturbation condition) Recall that in Gu and Li [36], the initial condi-
tion needs to be of the form u(0, x) = λ + g(x) with g ∈ L1(Rd) ∩ L∞(Rd); see
Remark 3.6 (ibid.). The above Theorem 5.14 relaxes this perturbation term g. Indeed,
the perturbation term g can go well beyond functions in L1(Rd) ∩ L∞(Rd). To state
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the most general perturbation type assumption on the initial condition, suppose that
the rough initial measure μ can be decomposed into two parts μ = μ0 + μ1 such
that μ0 is a rough initial measure that satisfies (5.31), and μ1, another rough initial
measure, is treated as the perturbation. Here is the perturbation condition:

lim
t→∞ sup

x∈Rd
|J0(t, x;μ1)| = 0. (5.34)

Thanks to part (2) of Theorem 5.14, provided the above perturbation condition (5.34)
holds, or equivalently, if

lim
t→∞ sup

x∈Rd
|J0(t, x;μ)| = lim

t→∞ sup
x∈Rd

|J0(t, x;μ0)| ,

then the limiting random field Z follows the same law no matter whether the system
starts from μ or μ0. The perturbation condition (5.34) gives a partition of all possible
rough initial conditions into equivalent classeswith respect to the law of the asymptotic
random field Z .

Example 5.16 Following the same setup as Remark 5.15, we provide some examples
for which the perturbation condition (5.34) is satisfied:

(a) μ1 is such that |μ1| is a finite Borel measure. One can consider for instance a
Dirac delta measure μ1 = δ0(x), or a linear combination of the form μ1 =
δ−1(x) − δ1(x). This is clear because J0(t, x; |μ1|) ≤ (2π t)−d/2 |μ1|(Rd), and
this last quantity converges to 0 as t → ∞.

(b) |μ1| does not need to be a finitemeasure. Consider for exampleμ1(dx) = |x |−αdx ,
for a given α ∈ (0, d). In this case, μ1 is a nonnegative and locally finite measure
with total variation being infinity. However, the perturbation condition (5.34) is
still satisfied. This fact is proved in Example 5.7 of [12],

sup
x∈Rd

J0(t, x; | · |−α) ≤ Cαt
−α/2 → 0, as t → ∞,

with Cα := 2−α/2�((d − α)/2)�(d/2).

(c) Let μ1 = ∑
k∈Zd δ2πk(x) − (2π)−d . We claim that μ1 satisfies the perturbation

condition (5.34). Indeed, in this case, for all x ∈ R
d and t > 0,

J0(t, x;μ1) = G(t, x) − (2π)−d , with G(t, x) :=
∑
k∈Zd

p(t, x + 2πk).

Since J0(t, x;μ1) is 2π periodic in each direction of x , we see that for t ≥ 1,

sup
x∈Rd

|J0(t, x;μ1)| = sup
x∈[−π,π ]d

∣∣∣G(t, x) − (2π)−d
∣∣∣ ≤ Ce−t/2 → 0, as t → ∞,

where the inequality follows from, e.g., part (4) of Lemma 2.1 in [17]. This proves
the claim. As a consequence, the solution u(t, x) to (5.1) starting from the flat
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initial condition (2π)−d and from
∑

k∈Zd δ2πk(x) both yield the limiting field Z
of the same distribution.

Remark 5.17 (Comparison with Theorem 5.10) Assumption (ii’) of Theorem 5.14 is
stronger than the assumption (ii) of Theorem 5.10. However, Theorem 5.14 does not
require the Sanz-Solé-Sarrà condition (5.29), nor does it impose additional require-
ments on the weight function ρ beyond being nonnegative and integrable. In [15], the
authors constructed a correlation function f (x) in R

3 that does not satisfy the Sanz-
Solé-Sarrà condition (5.29) by applying a logarithmic correction to the critical case.
They established solutions with unbounded oscillations. Nevertheless, the correlation
constructed there fulfills the conditionϒ(0) < ∞; see Theorem 2.1 and its proof ibid.

Remark 5.18 Hypothesis (iii) in Theorem 5.10 has been named weak disorder condi-
tion at the beginning of Section 5.3. This type of condition is related to the random
polymer literature and leads to central limit type theorems for the polymer measure;
see, e.g., [18]. We plan on pursuing this type of result for general environments W in
a subsequent publication.

Before proving Theorem 5.14, let us introduce some additional notation.

Notation 5.19 The function J0(t, x; |μ|) defined by (5.14) is smooth on (0,∞)×R
d .

Hence, condition (5.31) implies that the following two constants are finite:

Cμ := sup
x∈Rd

J0 (1, x; |μ|) < ∞ , and Ĉμ := sup
(t,x)∈[1,∞)×Rd

J0 (t, x; |μ|) < ∞.

(5.35)

It is clear that Cμ ≤ Ĉμ. For all t ≥ 0, we also define

k(t) :=
∫∫

R2d
dydy′ p(t, y)p(t, y′) f (y − y′) = (2π)−d

∫
Rd

f̂ (dξ) e−t |ξ |2 , (5.36)

where the second equality is an application of the Plancherel theorem. Eventually, we
set

H(t) :=
∫ ∞

t
k(s)ds. (5.37)

We also label a preliminary result for further use. Its elementary proof is left to the
reader for sake of conciseness.

Lemma 5.20 Assume that the assumption (5.10) holds, i.e., ϒ(0) < ∞. Then the
function H(t) defined in (5.37) is monotone decreasing, such that

H(t) ↓ 0 as t → ∞, and H(t) ↑ (2π)−d
∫
Rd

f̂ (dξ)

|ξ |2 = ϒ(0), as t ↓ 0.

(5.38)
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We are now ready to prove the main result of this section.

Proof of item (1) in Theorem 5.14 Recall that we assume the coefficient b to depend on
the u variable only. Thanks to the well-posedness results, as established in [16], one
can find a unique solution to (5.1) starting from the rough initial condition μ. Also
note that in the proof, we use ‖·‖p to denote L

p(�) norms. We now divide our proof
in several steps.
Step 1: Dynamical system in negative time. Since we consider the large time behavior,
one can restart the system at time 1. Indeed, the Cauchy-Schwarz inequality and the
moment bound (5.21) imply that, for all t > 0 and x ∈ R

d ,

E

(
[u(1, ·) ∗ p(t, ·)(x)]2

)
≤
∫
Rd

‖u(1, y)‖22 p(t, x − y)dy

≤ 1

L2
b

(
1 − 4L2

bϒ(0)
)
∫
Rd

J 20 (1, y)p(t, x − y)dy ≤ C2
μ

L2
b

(
1 − 4L2

bϒ(0)
) < ∞,

(5.39)

where Cμ is defined by (5.35). Hence,

[u(1, ·) ∗ p(t, ·)](x) < ∞ a.s. for all t > 0 and x ∈ R
d .

This relation implies that u(1, ·), considered as an initial condition, satisfies assump-
tion (5.12) a.s. In the following, we will thus restart our system after one unit of
time.

For any parameter K > 0, we now extend the white noise Ẇ in time to a two-sided
noise indexed by t ∈ R. In addition, define a process u∗

K by

u∗
K =

{
u∗
K (t, x) : (t, x) ∈ [−K − 1,∞) × R

d
}

,

as the unique solution to the following equation

⎧⎪⎨
⎪⎩

(
∂

∂t
− 1

2



)
u∗
K (t, x) = b

(
u∗
K (t, x)

)
Ẇ (t, x), (t, x) ∈ [−K − 1,∞) × R

d ,

u∗
K (−K − 1, ·) = μ.

(5.40)

We will restart the system at time −K , namely,

u∗
K (−K , x) = J0(1, x;μ) +

∫ −K

−K−1

∫
Rd

p (−K − s, x − y) b
(
u∗
K (s, y)

)
W (ds, dy).

(5.41)

According to this procedure, the process uK is now defined as

uK =
{
uK (t, x) : (t, x) ∈ [−K ,∞) × R

d
}

,
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given as the unique solution to the following restarted equation:

⎧⎪⎨
⎪⎩

(
∂

∂t
− 1

2



)
uK (t, x) = b (uK (t, x)) Ẇ1(t, x), (t, x) ∈ [−K ,∞) × R

d ,

uK (−K , x) = u∗
K (−K , x), x ∈ R

d , a.s.,
(5.42)

where Ẇ1(t, x) = Ẇ (1 + t, x) is a time-shifted noise. Note that equivalently, uK is
defined through the following mild formulation:

uK (t, x) = J0
(
t + K , x; u∗

K (−K , ·))+
∫ t

−K

∫
Rd

p(t − s, x − y)b(uK (s, y))

W1(ds, dy). (5.43)

Due to the time stationarity of noise Ẇ , we see that the random field

ũ =
{
ũ(t, x) = uK (t − K − 1, x) ; (t, x) ∈ [0,∞) × R

d
}

shares the same distribution as u—the solution to (5.1). In the following, we are thus
reduced to prove the following claim in order to establish the theorem:
Claim:

{
uK (0, x); K ≥ 0, x ∈ R

d
}
is a Cauchy sequence in L∞ (

R
d; L2 (�)

) ∩
L2
(
�; L2

ρ

(
R
d
))
.

The remainder of the proof is now devoted to prove the above claim.
Step 2: Reduction to an L2(�)-estimate. Let K > 0. Denote

J (t + K , x) := sup
L≥K

E

[
(uL(t, x) − uK (t, x))2

]
, for all t ≥ −K and x ∈ R

d .

(5.44)

We also define

J (t + K ) := sup
x∈Rd

J (t + K , x). (5.45)

Then, the convergence in L∞ (
R
d ; L2 (�)

)
, as stated in our Claim above, holds if and

only if, for any finite t ∈ R,

lim
K→∞J (K + t) = 0. (5.46)

Moreover, relation (5.46) implies the convergence in L2
ρ

(
R
d; L2 (�)

)
, as stated in the

conclusion (5.32) of Theorem 5.14. This implication is observed by noticing that

∫
Rd

E

[
(uL(0, x) − uK (0, x))2

]
ρ(x)dx ≤ J (K ) ‖ρ‖L1(Rd ) → 0, as L > K → ∞.
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Hence, the Claim is proved once the limit in (5.46) is established.
Step 3: Some additional notation. In the following, we will focus on proving (5.46).
Let us first set up some notation. Since |b(u)| ≤ Lb|u| thanks to (5.20), we see that
the quantity J (t + K , x) defined by (5.44) can be decomposed as

J (t + K , x) ≤ 4I K0 (t, x) + 4I K1 (t, x) + 2I K2 (t, x), (5.47)

where

I K0 (t, x) := sup
L≥K

E

[∣∣J0 (t + L, x; u∗
L (1, ·))− J0

(
t + K , x; u∗

K (1, ·))∣∣2] , (5.48)

I K1 (t, x) := L2
b sup

L≥K
E

[ ∫ −K

−L
ds
∫∫

R2d
dydy′ p(t − s, x − y)p(t − s, x − y′)

×|uL(s, y)uK (s, y′)| f (y − y′) ],
(5.49)

and

I K2 (t, x) := L2
b sup

L≥K
E

[ ∫ t

−K
ds
∫∫

R2d
dydy′ p(t − s, x − y) |uL(s, y) − uK (s, y)|

× f (y − y′)p(t − s, x − y′)
∣∣uL(s, y′) − uK (s, y′)

∣∣
]
.

(5.50)

We now bound the terms I K0 , I K1 , and I K2 separately.
Step 4: Term I K0 (t, x). Let us first bound the term I K0 defined by (5.48). To this aim,
we first recall from (5.14) that for a given K > 0, we have

J0
(
t + K , x; u∗

K (−K , ·)) =
∫
Rd

p (t + K , x − y) u∗
K (−K , y)dy.

Then plug in expression (5.41) for u∗
K , and use the semigroup property for the heat

kernel. This allows to write

J0
(
t + K , x; u∗

K (−K , ·)) =J0(t + K + 1, x;μ) + SK (t, x), (5.51)

where the stochastic integral in (5.51) is defined by

SK (t, x) :=
∫ −K

−K−1

∫
Rd

p (t − s, x − y) b
(
u∗
K (s, y)

)
W (ds, dy). (5.52)
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Reporting this expression into the definition (5.48) of I K0 (t, x), some elementary
manipulations show that

I K0 (t, x) ≤ 4�(t + K ) + 8 sup
L≥K

‖SL(t, x)‖22 (5.53)

where for all τ ≥ 0, the term �(τ) can be further decomposed as

�(τ) := sup
s,r≥τ

sup
x∈Rd

|J0(s + 1, x;μ) − J0(r + 1, x;μ)|2 . (5.54)

We now proceed to bound the terms in relation (5.53). To begin with, it is clear
from condition (5.31) that the term �(t) in (5.54) is such that

sup
τ≥0

�(τ) < ∞; and �(τ) ↓ 0, as τ → ∞. (5.55)

Therefore we immediately get limK→∞ �(t+K ) = 0. Our main task is thus to bound
the quantity SK (t, x) introduced in (5.52). However, this term can be estimated thanks
to a direct application of relation (5.6) plus Cauchy-Schwarz’s inequality as follows:

‖SK (t, x)‖22 ≤ L2
b

∫ −K

−K−1
ds
∫∫

R2d
dydy′ p (t − s, x − y)

∥∥u∗
K (−K , y)

∥∥
2

× f (y − y′)p
(
t − s, x − y′) ∥∥u∗

K (−K , y′)
∥∥
2 .

Plugging our moment bound (5.21) into the above inequality, we end up with

‖SK (t, x)‖22 ≤ 1

1 − 4L2
bϒ(0)

∫ −K

−K−1
ds
∫∫

R2d
dydy′ p (t − s, x − y) J0(1, y; |μ|)

× f (y − y′)p
(
t − s, x − y′) J0(1, y′; |μ|).

(5.56)

Therefore, using the constant Cμ defined in (5.35) and the function H(t) in (5.37), we
have

sup
L≥K

‖SL(t, x)‖22

≤ C2
μ

1 − 4L2
bϒ(0)

sup
L≥K

∫ t+L+1

t+L
ds

∫∫
R2d

dydy′ p (s, x − y) p
(
s, x − y′) f (y − y′)

= C2
μ

1 − 4L2
bϒ(0)

sup
L≥K

[H(t + L) − H(t + L + 1)]

≤ C2
μ

1 − 4L2
bϒ(0)

H(t + K ), (5.57)

123



Stochastics and Partial Differential Equations: Analysis and Computations

where the last equality is due to Lemma 5.20. Summarizing our considerations for the
term I K0 , we gather relations (5.53), (5.55), and (5.57), and get

I K0 (t, x) ≤ 4�(t + K ) + 8C2
μH(t + K )

1 − 4L2
bϒ(0)

. (5.58)

Step 5: Term I K1 (t, x). For the term I K1 defined by (5.49), one proceeds similarly to
I K0 . That is we start by using relation (5.6), which yields

I K1 (t, x) ≤ L2
b sup
L≥K

∫ −K

−L
ds
∫∫

R2d
dydy′ p(t − s, x − y) ‖uL(s, y)‖2

× f (y − y′)p(t − s, x − y′)
∥∥uL(s, y′)

∥∥
2 . (5.59)

Next, we notice that uK (s, y) := u(s + K + 1, y), where u is the solution to (5.1).
Hence, applying the moment bound (5.21) as for (5.49), we see that

‖uL(s, y)‖22 = ‖u(s + L + 1, y)‖22 ≤ J 20 (s + L + 1, y; |μ|)
L2
b(1 − 4L2

bϒ(0))
.

Reporting his information into (5.59), we have thus obtained an inequality which
mimics relation (5.56):

I K1 (t, x) ≤ 1

1 − 4L2
bϒ(0)

sup
L≥K

∫ −K

−L
ds
∫∫

R2d
dydy′

p(t − s, x − y)J0(s + L + 1, y; |μ|)
× f (y − y′)p(t − s, x − y′)J0(s + L + 1, y′; |μ|).

From there, we basically repeat the calculations leading to (5.57). We let the patient
reader check that

I K1 (t, x) ≤ Ĉ2
μ H(t + K )

1 − 4L2
bϒ(0)

, (5.60)

where we recall that Ĉμ is introduced in (5.35) and the function H is given by (5.37).
Step 6: Term I K2 (t, x). This term is treated very similarly to I K0 (t, x) and I K1 (t, x). Let
us just summarize briefly the computations for the sake of completeness. Specifically,
starting from the definition of I K2 , applying relation (5.6) and the Cauchy-Schwarz
inequality, we get

I K2 (t, x) ≤ L2
b sup

L≥K

∫ t

−K
ds
∫∫

R2d
dydy′ p(t − s, y) ‖uL(s, x − y) − uK (s, x − y)‖2

× f (y − y′)p(t − s, y′)
∥∥uL(s, x − y′) − uK (s, x − y′)

∥∥
2 .
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Recalling the notation for J (t + K ) in (5.45) and the definition of k(s) in (5.36), we
see that

I K2 (t, x) ≤ L2
b

∫ t

−K
ds J (s + K )

∫∫
R2d

dydy′ p(t − s, y) f (y − y′)p(t − s, y′)

= L2
b

∫ t+K

0
ds J (t + K − s)k(s). (5.61)

Step 7: Conclusion In order to conclude the proof of (5.32), combine relations (5.58),
(5.60), and (5.61) into (5.47). Also, recall that J (t + K ) is defined by (5.45). We get
that for all t > K ,

J (t + K ) ≤ gK (t) + 2L2
b

∫ t+K

0
J (t + K − s)k(s)ds, (5.62)

where the function gK is defined as

gK (t) := 16�(t + K ) + 4
(
8C2

μ + Ĉ2
μ

)
H(t + K )

1 − 4L2
bϒ(0)

. (5.63)

Now recall that � and H are respectively introduced in (5.54) and (5.37). Moreover,
owing to (5.55) and (5.38), we have that gK in (5.63) decreases to 0 as t → ∞. Hence
one can safely apply (A.5) in order to get limK→∞ J (t + K ) = 0 for any fixed t ∈ R

provided that 4L2
bϒ(0) < 1, which is guaranteed by condition (iii) of Theorem 5.14.

This thereby confirms (5.46). This proves part (1) of Theorem 5.14.

Proof of item (2) in Theorem 5.14 For i = 1, 2, let ui be the solution to (5.1) starting
from the rough initial condition μi satisfying (5.31). Let Zi be the respective limiting
random fields. Set u := u1 − u2, μ := μ1 − μ2, b̃(u) := b(u + u2) − b(u2), and
Z := Z1 − Z2. Assume that

lim
t→∞ sup

x∈Rd
|J0(t, x;μ)| = 0. (5.64)

Hence, u is the solution to (5.1) with the diffusion coefficient b replaced by b̃ starting
fromμ. Note that b̃(0) = 0 and b̃ and b share the sameLipschitz constant Lb. Thus, the
arguments in Steps 1–7 (proof of Theorem 5.14 item (1)) still apply for the current u.
We thus get a limiting random field called Z . Under this setup, it suffices to prove that

Z
(d)= 0, i.e., the limiting random field follows the same law as the trivial (vanishing)

field. To this aim, we can resort again to a similar seven-step proof as for part (1).
Below, we only highlight the modifications. In particular, Step 1 remains unchanged,
and we recall that uK denotes the solution restarted from negative time −K after the
system has run for one unit of time from μ. In Step 2, all occurrences of uL and
suprema over L ≥ K should be removed. Notably, the quantity J (t + K ) defined
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in (5.45) now takes the following form

J (t + K ) = sup
x∈Rd

E

[
u2K (t, x)

]
. (5.65)

Proceed similarly in Step 3. Now, in the expression of I K0 (see(5.48)), only one term
remains—the one involving u∗

K . Additionally, I
K
1 ≡ 0 (see (5.49)). In Step 4, the

upper bound for ‖SK ‖22 as given in (5.57) remains valid. The expression �(τ) given
in (5.54) should be replaced by

�̃(τ ) := sup
s≥τ

sup
x∈Rd

|J0(s + 1, x;μ)|2 . (5.66)

Condition (5.64) implies that both properties in (5.55) with � replaced by �̃ still
hold. One can skip Step 5 since I K1 ≡ 0. One can also repeat Step 6 in the proof of
item (1) above, with J (r) replaced by the quantity (5.65). This yields an estimate for
I K2 which is similar to (5.61). Then, in Step 7 we obtain (5.62) and (5.63), but with
� replaced by �̃. Finally, since �̃ now vanishes as τ → ∞, we conclude in the same
way as in Step 7 that limK→∞ J (t + K ) = 0. Thus, for any t ∈ R and x ∈ R

d fixed,
uK (t, x) → 0 in L2(�) as K → ∞ and hence the convergence also holds in law. By
part (1) of Theorem 5.14, we also know that uK (t, x) → Z(x) in law as K → ∞.
Therefore, the two limits have to be equal a.s., namely,

Z(x) = 0, a.s. for all x ∈ R
d ,

which immediately implies that the finite dimensional distributions of the field Z are
the same as those of the zero field. This completes the proof of part (2) of Theorem5.14.

Remark 5.21 Our result in Theorem 5.14 is stated as a convergence in L2
ρ(Rd). Under

condition (iv) of Theorem 5.10, and considering some weighted Garsia-Rodemich-
Rumsey type lemmas, we could have improved the topology in which the convergence
holds. Namely one can obtain a convergence in distribution in weighted Hölder spaces
of the form Cβ

ρ (Rd), for a proper Hölder exponent β. However, since the use of
weighted Garsia-Rodemich-Rumsey inequalities is cumbersome, we have postponed
this objective to a further publication for sake of conciseness.

A A Gronwall-type lemma

In this appendix, we prove a generic Gronwall-type lemma, which plays a key role in
the proof of Theorem 5.14.

Lemma A.1 Let g(·) be a nonnegative andmonotone function on [0,∞) that decreases
to 0 as t → ∞, and such that g(0) < ∞. Let k(·) be a nonnegative and integrable
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function on [0,∞) and define

h(t) :=
∫ ∞

t
k(s)ds. (A.1)

Then, we have:

(i) For any nonnegative integer n and t ≥ 0, it holds that

∫ t

0
g

(
t − s

2n

)
k(s)ds ≤ g(0)h

(
t

2n+1

)
+ h(0)g

(
t

2n+1

)
. (A.2)

In particular, when g = h as defined in (A.1), the above inequality (A.2) reduces
to

∫ t

0
h

(
t − s

2n

)
k(s)ds ≤ 2h(0)h

(
t

2n+1

)
. (A.3)

(ii) For any nonnegative integer n and t ≥ 0, it holds that

∫
[0,t]n<

dun · · · du1 g (t − un)
n∏

i=1

k(ui − ui−1)

≤ (
2n − 1

)
g(0)h(0)n−1h

(
t

2n

)
+ h(0)ng

(
t

2n

)
, (A.4)

where [0, t]n< := {(s1, . . . , sn) ∈ [0, t]n; 0 < s1 < · · · < sn < t} and we have
used the convention that u0 ≡ 0.

(iii) Let f be a function on [0,∞) such that

f (t) ≤ g(t) + β

∫ t

0
f (t − s)k(s)ds, for all t ≥ 0 with β > 0.

Then, whenever β < [2h(0)]−1, the following convergence is true,

lim
t→∞ f (t) = 0. (A.5)

Remark A.2 This result generalizes [36, Lemma 3.5], in which g = h, and k(t) =
1 ∧ t−d/2. The difficulty of the above Gronwall-type lemma stems from not knowing
the exact decay rate of the kernel function k(s) as s → ∞, as well as the lack of
knowledge regarding whether and how k(s) diverges as s approaches zero (see, e.g.,
the Riesz-type kernel given in (5.11)). The proof below is based on the dominated
convergence argument. For comparison,when dealingwith specific forms of the kernel
function k(s), such as k(s) = s−1/α for α > 1, explicit computations can be carried
out; see Lemma A.2 of [13] for more details.
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Proof of LemmaA.1 We will prove the 3 items successively.
Part (i). Decompose the integral into two regions:

∫ t

0
g

(
t − s

2n

)
k(s)ds =

(∫ t
2n+1

0
+
∫ t

t
2n+1

)
g

(
t − s

2n

)
k(s)ds =: I1 + I2. (A.6)

Noting that both functions g and h are monotonically decreasing on [0,∞), we see
that

I1 ≤ g

(
t

2n+1

)∫ t
2n+1

0
k(s)ds ≤ h(0)g

(
t

2n+1

)
and (A.7)

I2 ≤ g(0)
∫ ∞

t
2n+1

k(s)ds = g(0)h

(
t

2n+1

)
. (A.8)

Plugging (A.7) and (A.8) into (A.6) proves part (i) of Lemma A.1.
Part (ii). We will prove (A.4) by induction in n. When n = 1, (A.4) is simply a
consequence of part (i). Assume that n ≥ 2 and that (A.4) holds for n − 1. For
t > u1 > 0, by the induction assumption, we see that

∫
[u1,t]n−1

<

dun · · · du2 g (t − un)
n∏

i=2

k(ui − ui−1)

=
∫

[0,t−u1]n−1
<

dvn · · · dv2 g (t − u1 − vn)

n∏
i=2

k(vi − vi−1)

≤
(
2n−1 − 1

)
g(0)h(0)n−2h

(
t − u1
2n−1

)
+ h(0)n−1g

(
t − u1
2n−1

)
.

Denote the left-hand-side (resp. right-hand-side) of the inequality (A.4) by Ln(t) (resp.
Rn(t)). Integrating both sides of the above inequality from 0 to t with respect to the
u1 variable gives

Ln(t) ≤
(
2n−1 − 1

)
g(0)h(0)n−2

∫ t

0
h

(
t − u1
2n−1

)
k(u1)du1

+ h(0)n−1
∫ t

0
g

(
t − u1
2n−1

)
k(u1)du1 ≤ Rn(t),

where we have applied the bounds (A.2) and (A.3) to the above two integrals. This
proves part (ii) of Lemma A.1.
Part (iii). By iteration, one can write

f (t) ≤g(t) +
∞∑
n=1

βn
∫ t

0
dsn

∫ t−sn

0
dsn−1 · · ·

∫ t−∑n
j=2 s j

0
ds1 g

⎛
⎝t −

n∑
j=1

s j

⎞
⎠ n∏

i=1

k(si )
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=g(t) +
∞∑
n=1

βn
∫

[0,t]n<
dun · · · du1 g (t − un)

n∏
i=1

k(ui − ui−1).

Thus, part (ii) implies that

f (t) ≤g(t) +
∞∑
n=1

βn
[(
2n − 1

)
g(0)h(0)n−1h

(
t

2n

)
+ h(0)ng

(
t

2n

)]

≤g(t) + max{1, g(0), h(0)}
∞∑
n=1

2β[2βh(0)]n−1
(
h

(
t

2n

)
+ g

(
t

2n

))
.

(A.9)

By replacing t by 0 in the last line of (A.9) we see that provided that 2βh(0) < 1,
the summation is finite. Hence, one can apply the dominated convergence theorem to
pass the limit of t → ∞ inside the summation. This completes the whole proof of
Lemma A.1.
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